Data Collection
Summary Products for Habitat-based Cetacean Density Models for the U.S. Atlantic, prepared by the Marine-life Data and Analysis Team (MDAT)

<table>
<thead>
<tr>
<th>Data Collection Title</th>
<th>MDAT_WS_MAMMAL_SUMMARY_PRODUCTS_V2.1_2019_03_01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection URL</td>
<td>Map services: http://mgelmaps.env.duke.edu/mdat/rest/services/MDAT</td>
</tr>
</tbody>
</table>

Data Set
Data Set Title
MDAT_WS_MAMMAL_SUMMARY_PRODUCTS_V2.1_2019_03_01

Principal Investigators
MDAT Project:
Patrick N. Halpin (PI) - Marine Geospatial Ecology Lab at Duke University; Earvin Balderama (Co-I) - Loyola University Chicago; Michael Fogarty (Co-I) - NOAA/NEFSC; Arliss Winship (Co-I) - NOAA/NCCOS
MGEL Project:

Primary Points of Contact
MDAT Collection: Jesse Cleary (jesse.cleary@duke.edu) - Marine Geospatial Ecology Lab at Duke University
MGEL Models: Jason J. Roberts (jason.roberts@duke.edu) - Marine Geospatial Ecology Lab at Duke University

Collaborators
MDAT members:
Earvin Balderama (Co-I, Loyola University Chicago)
Jesse Cleary (Duke University)
Corrie Curtice (Duke University)
Michael Fogarty (Co-I, NOAA/NEFSC)
Patrick N. Halpin (PI, Duke University)
Brian Kinlan (NOAA/NCCOS)
Charles Perretti (NOAA/NEFSC)
Marta Ribera (TNC)
Jason Roberts (Duke University)
Emily Shumchenia (NROC)
Arliss Winship (Co-I, NOAA/NCCOS)

Author List
MDAT Technical Report:
Corrie Curtice¹, Jesse Cleary², Emily Shumchenia³, Patrick Halpin²
¹ Marine Geospatial Ecology Laboratory, Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC, US
² Marine Geospatial Ecology Laboratory, Duke University, Durham, NC, US
³ Northeast Regional Ocean Council, US

Scientific Reports publication about the marine mammal individual species models:
Jason J. Roberts¹, Benjamin D. Best¹,², Laura Mannocci¹, Ei Fujioka¹, Patric N. Halpin², Debra L. Palka³, Lance P. Garrison⁴, Keith D. Mullin⁵, Timothy V. N. Cole³, Christin B. Khan³, William A. McLellan⁶, D. Ann Pabst⁶ & Gwen G. Lockhart⁷
¹ Marine Geospatial Ecology Laboratory, Nicholas School of the Environment, Duke University, Durham, NC, USA.
² Bren School of Environmental Sciences and Management, University of California, Santa Barbara, CA, USA.
Northeast Fisheries Science Center, National Marine Fisheries Service, Woods Hole, MA, USA.
Southeast Fisheries Science Center, National Marine Fisheries Service, Miami, FL, USA.
Southeast Fisheries Science Center, National Marine Fisheries Service, Pascagoula, MS, USA.
Biology and Marine Biology, University of North Carolina Wilmington, NC, USA.
Virginia Aquarium & Marine Science Center, Virginia Beach, VA, USA.

Abstract

In 2014, the Marine Geospatial Ecology Lab (MGEL) of Duke University began work with the Northeast Regional Ocean Council (NROC), the NOAA National Centers for Coastal Ocean Science (NCCOS), the NOAA Northeast Fisheries Science Center (NEFSC) and Loyola University Chicago, as part of the Marine-life Data and Analysis Team (MDAT), to characterize and map marine life in the Northeast region in support of the Regional Ocean Plan. In 2015, the Mid-Atlantic Regional Council on the Ocean (MARCO) contracted with MDAT to build upon and expand this effort into the Mid-Atlantic planning area, and in support of the Mid-Atlantic Regional Ocean Plan. These research groups collaborated to produce “base layer” predictive model products with associated uncertainty products for cetacean species or species guilds and avian species, and three geospatial products for fish species. Periodic updates to these base layer models and data are produced by the individual institutions in the MDAT team based on schedules set by the funders of each modeling effort.

Because base layers total in the thousands, efforts to develop a general understanding of the overall richness or diversity in a particular area are not well served by the individual base products. To address this gap and other potential management applications as identified by the NE RPB and others, MDAT has created several types of summary map products from these base layers. Summary products are comprised of data layers from multiple species, and were created to allow quick access to map summaries about potential biological, management, or sensitivity groups of interest. These summary products include total abundance or biomass, species richness, and diversity for all modeled/sample groups of species and are useful tools for seeing broad patterns in the underlying data or model results.
An additional map product was created to highlight the core areas of highest abundance or biomass by species groups, using a 50% population threshold. Group core area richness maps aid users in identifying the “hotspots” of where certain groups of species have the highest abundance or biomass. Core area richness maps were created for three spatial extents: 1) the full US east coast; 2) the Northeast planning area and 3) the Mid-Atlantic area of interest. Because these products are dependent on the total extent of the input data, core area abundance/biomass products will differ at each extent.

Purpose

MDAT produced group summary products and delivered them to the Northeast and Mid-Atlantic (US) regional ocean portals and the national Marine Cadastre to inform ocean planning. All summary products are also available to the public via map services.

Methods

See Curtice et al. (2019) Section 3.

2018 v2.0 Update: v2.0 updates the group diversity and species richness products. Prior to group diversity and richness calculations, each individual species layer was pre-filtered to contain only the cells that are included in the area holding 95% of the total predicted abundance for the species. In addition, individual species models that are stratified density (vs habitat-based density) models are excluded from all group summary products.

2019 v2.1 Update: No methods were updated for this release.

Citations

MDAT Technical Report:

MGEL publications on cetacean individual species models:

<table>
<thead>
<tr>
<th>Data Start Date</th>
<th>1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data End Date</td>
<td>2016</td>
</tr>
<tr>
<td>Data Northern Boundary</td>
<td>47.7 degrees N</td>
</tr>
<tr>
<td>Data Southern Boundary</td>
<td>22.9 degrees N</td>
</tr>
<tr>
<td>Data Western Boundary</td>
<td>82.5 degrees W</td>
</tr>
<tr>
<td>Data Eastern Boundary</td>
<td>55.0 degrees W</td>
</tr>
<tr>
<td>Place Keywords</td>
<td>North Atlantic Ocean</td>
</tr>
</tbody>
</table>
| **Spatial Reference Information** | Type: Projected
Geographic Coordinate Reference: GCS_WGS_1984
Projection: WGS_1984_Albers
Well-Known Text: PROJCS["WGS_1984_Albers",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS_1984",
SPHEROID["WGS_1984",6378137.0,298.257223563]],
PRIMEM["Greenwich",0.0],
UNIT["Degree",0.0174532925199433]],
PROJECTION["Albers"],
PARAMETER["false_easting",0.0],
PARAMETER["false_northing",0.0],
PARAMETER["central_meridian",-78.0],
PARAMETER["standard_parallel_1",40.6666666666666666666],
PARAMETER["standard_parallel_2",27.3333333333333333333],
PARAMETER["latitude_of_origin",34.0],
UNIT["Meter",1.0]] |
| **Spatial Representation Type** | Grid |
| **Datasets** | Listed in Table 5 of Curtice et al. (2019) |
| **Update Frequency** | Irregular |
| **Resource Provider** | Marine Geospatial Ecology Lab (MGEL) at Duke University (marinelife_data@duke.edu), on behalf of MDAT. |
| **Comment** | This data documentation describes numerous geospatial datasets archived together as a data collection, and is intended to provide dataset-level metadata for the purposes of discovery, use, and understanding. |
| **Use Limitation** | This dataset is copyright 2017 by the Marine Geospatial Ecology Lab at Duke University and licensed under a Creative Commons Attribution 4.0 International License (CC-BY) (http://creativecommons.org/licenses/by/4.0/). If you use this dataset in a scientific publication or other formal publication, we request that you cite the Roberts et al. (2016, 2017, 2018) and Curtice et al. (2019) publications. |