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1 Survey Data

Following Mannocci et al. (2017), whose model we were updating, we built this model from data collected in the east coast,
Gulf of Mexico, and Caribbean and excluded surveys of Europe and the Mid-Atlantic Ridge. We did include segments south
of 50 ◦N and west of 40 ◦W from a trans-Atlantic survey by R/V Song of the Whale. We excluded surveys that did not
target fin whales or were otherwise problematic for modeling them. We restricted the model to survey transects with sea
states of Beaufort 5 or less (for a few surveys we used Beaufort 4 or less) for both aerial and shipboard surveys. We also
excluded transects with poor weather or visibility for surveys that reported those conditions. Table 1 summarizes the survey
effort and sightings available after most exclusions were applied. Figure 1 shows the data actually used to fit the model.

Table 1: Survey effort and observations considered for this model. Effort is tallied as the cumulative length
of on-effort transects. Observations are the number of groups and individuals encountered while on effort.
Off effort observations and those lacking an estimate of group size or distance to the group were excluded.

Effort Observations
Institution Program Period 1000s km Groups Individuals Mean Group Size

Aerial Surveys
HDR Navy Norfolk Canyon 2018-2019 11 20 35 1.8
NEAq CNM 2017-2020 2 15 16 1.1
NEAq MMS-WEA 2017-2020 37 51 93 1.8
NEAq NLPSC 2011-2015 43 75 126 1.7
NEFSC AMAPPS 2010-2019 89 131 158 1.2
NEFSC NARWSS 2003-2020 484 2,192 3,213 1.5
NEFSC Pre-AMAPPS 1999-2008 46 144 175 1.2
NJDEP NJEBS 2008-2009 11 1 1 1.0
NYS-DEC/TT NYBWM 2017-2020 77 82 149 1.8
SEFSC AMAPPS 2010-2020 114 28 38 1.4
SEFSC MATS 1995-2005 34 6 13 2.2
SEFSC SECAS 1992-1995 8 0 0
U. La Rochelle REMMOA 2008-2017 42 2 2 1.0
UNCW MidA Bottlenose 2002-2002 17 1 2 2.0
UNCW Navy Cape Hatteras 2011-2017 34 5 7 1.4
UNCW Navy Jacksonville 2009-2017 92 0 0
UNCW Navy Norfolk Canyon 2015-2017 14 8 9 1.1
UNCW Navy Onslow Bay 2007-2011 49 1 1 1.0
UNCW SEUS NARW EWS 2005-2008 114 12 31 2.6
VAMSC MD DNR WEA 2013-2015 16 8 13 1.6
VAMSC Navy VACAPES 2016-2017 19 1 2 2.0
VAMSC VA CZM WEA 2012-2015 21 11 27 2.5

Total 1,376 2,794 4,111 1.5
Shipboard Surveys

MCR SOTW Visual 2012-2019 9 19 29 1.5
NEFSC AMAPPS 2011-2016 16 259 365 1.4
NEFSC Pre-AMAPPS 1995-2007 18 160 218 1.4
NJDEP NJEBS 2008-2009 14 24 35 1.5
SEFSC AMAPPS 2011-2016 17 5 7 1.4
SEFSC Pre-AMAPPS 1992-2006 33 11 15 1.4
SEFSC SEFSC Caribbean 1995-2000 8 1 1 1.0

Total 115 479 670 1.4

Grand Total 1,491 3,273 4,781 1.5

Table 2: Institutions that contributed surveys used in this model.

Institution Full Name
HDR HDR, Inc.

2



Table 2: Institutions that contributed surveys used in this model. (continued)

Institution Full Name
MCR Marine Conservation Research
NEAq New England Aquarium
NEFSC NOAA Northeast Fisheries Science Center
NJDEP New Jersey Department of Environmental Protection
NYS-DEC/TT New York State Department of Environmental Conservation and Tetra Tech, Inc.
SEFSC NOAA Southeast Fisheries Science Center
U. La Rochelle University of La Rochelle
UNCW University of North Carolina Wilmington
VAMSC Virginia Aquarium & Marine Science Center

Table 3: Descriptions and references for survey programs used in this model.

Program Description References
AMAPPS Atlantic Marine Assessment Program for Protected Species Palka et al. (2017), Palka et

al. (2021)
CNM Northeast Canyons Marine National Monument Aerial

Surveys
Redfern et al. (2021)

MATS Mid-Atlantic Tursiops Surveys
MD DNR WEA Aerial Surveys of the Maryland Wind Energy Area Barco et al. (2015)
MidA Bottlenose Mid-Atlantic Onshore/Offshore Bottlenose Dolphin Surveys Torres et al. (2005)
MMS-WEA Marine Mammal Surveys of the MA and RI Wind Energy

Areas
Quintana-Rizzo et al.
(2021), O’Brien et al. (2022)

NARWSS North Atlantic Right Whale Sighting Surveys Cole et al. (2007)
Navy Cape Hatteras Aerial Surveys of the Navy’s Cape Hatteras Study Area McLellan et al. (2018)
Navy Jacksonville Aerial Surveys of the Navy’s Jacksonville Study Area Foley et al. (2019)
Navy Norfolk Canyon Aerial Surveys of the Navy’s Norfolk Canyon Study Area Cotter (2019), McAlarney et

al. (2018)
Navy Onslow Bay Aerial Surveys of the Navy’s Onslow Bay Study Area Read et al. (2014)
Navy VACAPES Aerial Survey Baseline Monitoring in the Continental Shelf

Region of the VACAPES OPAREA
Mallette et al. (2017)

NJEBS New Jersey Ecological Baseline Study Geo-Marine, Inc. (2010),
Whitt et al. (2015)

NLPSC Northeast Large Pelagic Survey Collaborative Aerial Surveys Leiter et al. (2017), Stone et
al. (2017)

NYBWM New York Bight Whale Monitoring Surveys Zoidis et al. (2021)
Pre-AMAPPS Pre-AMAPPS Marine Mammal Abundance Surveys Mullin and Fulling (2003),

Garrison et al. (2010), Palka
(2006)

REMMOA REcensement des Mammifères marins et autre Mégafaune
pélagique par Observation Aérienne

Mannocci et al. (2013),
Laran et al. (2019)

SECAS Southeast Cetacean Aerial Surveys Blaylock and Hoggard
(1994)

SEFSC Caribbean SEFSC Surveys of the Caribbean Sea Mullin (1995), Swartz and
Burks (2000)

SEUS NARW EWS Southeast U.S. Right Whale Early Warning System Surveys
SOTW Visual R/V Song of the Whale Visual Surveys Ryan et al. (2013)
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Table 3: Descriptions and references for survey programs used in this model. (continued)

Program Description References

VA CZM WEA Virginia CZM Wind Energy Area Surveys Mallette et al. (2014),
Mallette et al. (2015)
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2 Density Model

Our objective was to update the model of Mannocci et al. (2017) with new data without repeating the covariate selection
exercise performed by those authors. We therefore fitted a year-round, 4-covariate model that included distance to sea
surface temperature (SST) fronts, micronekton productivity, SST, and slope of the seafloor. All covariates were retained
during smoothness selection but moderately different relationships were fitted to all covariates except for the distance to
fronts covariate (Figure 2), for which the fit was essentially the same as Mannocci et al.’s model. In our model, density
decreased sharply as micronekton productivity decreased below 1 g m−2 while in Mannocci’s, the relationship turned back
toward positive. In our model, the influence of SST was weaker and turned negative below 9 ◦C, while in Mannocci’s it
remained positive down to the coldest sampled value, and also exerted a stronger negative influence at temperatures greater
than about 25 ◦C. Finally, in our model, the relationship for slope was weaker and hump-shaped, while in Mannocci’s it
plateaued at high values without turning back negative. These relationships yielded somewhat different predictions in our
model (Section 3), which we discuss below (Section 4). Univariate extrapolation analyses (Section 2.3.1) displayed geographic
patterns very similar to the environmental envelopes estimated by Mannocci et al. The necessity for univariate environmental
extrapolation was driven mainly by a lack of sampling in waters with with very few SST fronts, as occurs in the southeast
corner of the AFTT area in summer (Figure 9), and in waters with low sea surface temperatures (Figure 11), as occurs from
late fall through spring along the coasts of Newfoundland, Labrador, and Greenland.

2.1 Final Model

Figure 1: Survey segments (black lines) used to fit the model for the region AFTT Atlantic. Red points indicate segments
with observations. This map uses a Web Mercator projection but the analysis was conducted in an Albers Equal Area
coordinate system appropriate for density modeling.
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Statistical output for this model:

Family: Tweedie(p=1.169)
Link function: log

Formula:
IndividualsCorrected ~ offset(log(SegmentArea)) + s(log10(I(DistToFront1/1000)),

bs = "ts", k = 4) + s(sqrt(pmin(EpiMnkPB, 9.5)), bs = "ts",
k = 4) + s(log10(Slope), bs = "ts", k = 4) + s(SST, bs = "ts",
k = 4)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.2419 0.1341 -158.4 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(log10(I(DistToFront1/1000))) 1.114 3 9.999 <2e-16 ***
s(sqrt(pmin(EpiMnkPB, 9.5))) 2.907 3 110.747 <2e-16 ***
s(log10(Slope)) 2.941 3 121.354 <2e-16 ***
s(SST) 2.878 3 25.327 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.0219 Deviance explained = 12.7%
-REML = 17159 Scale est. = 7.7317 n = 175350

Method: REML Optimizer: outer newton
full convergence after 10 iterations.
Gradient range [-0.008985177,0.00826217]
(score 17158.71 & scale 7.731674).
Hessian positive definite, eigenvalue range [0.2601506,17124.02].
Model rank = 13 / 13

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value
s(log10(I(DistToFront1/1000))) 3.00 1.11 0.90 0.73
s(sqrt(pmin(EpiMnkPB, 9.5))) 3.00 2.91 0.85 0.01 **
s(log10(Slope)) 3.00 2.94 0.88 0.19
s(SST) 3.00 2.88 0.88 0.17
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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(a) Climatological distance to SST front (km) (b) Climatological epipelagic micronekton
biomass (g m−2)

(c) Climatological sea surface temperature (◦C)

(d) Seafloor slope (percent rise)

Figure 2: Functional plots for the final model for the region AFTT Atlantic. Transforms and other treatments are indicated
in axis labels. log10 indicates the covariate was log10 transformed. sqrt indicates the covariate was square-root transformed.
pmax and pmin indicate the covariate’s minimum and maximum values, respectively, were Winsorized to the values shown.
Winsorization was used to prevent runaway extrapolations during prediction when covariates exceeded sampled ranges, or
for ecological reasons, depending on the covariate. /1000 indicates meters were transformed to kilometers for interpretation
convenience.

Table 4: Covariates used in the final model for the region AFTT Atlantic.

Covariate Description
DistToFront1 Climatological monthly mean distance (km) to the closest sea surface temperature front

detected in daily GHRSST Level 4 CMC0.2deg images (Brasnett (2008); Canada
Meteorological Center (2012)) with MGET’s implementation of the Canny edge detector
(Roberts et al. (2010); Canny (1986))

EpiMnkPB Climatological monthly mean micronekton biomass in the epipelagic zone (g m−2) from
SEAPODYM (Lehodey et al. (2008); Lehodey et al. (2015))

SST Climatological monthly mean sea surface temperature (◦C) from GHRSST Level 4
CMC0.2deg (Brasnett (2008); Canada Meteorological Center (2012))

Slope Slope (percent rise) of the seafloor, derived from SRTM30_PLUS (Becker et al. (2009))
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2.2 Diagnostic Plots

Figure 3: Residual plots for the final model for the region AFTT Atlantic.
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Figure 4: Density histograms showing the distributions of the covariates considered during the final model selection step.
The final model may have included only a subset of the covariates shown here (see Figure 2), and additional covariates
may have been considered in preceding selection steps. Red and blue lines enclose 99% and 95% of the distributions,
respectively. Transforms and other treatments are indicated in axis labels. log10 indicates the covariate was log10 transformed.
pmax and pmin indicate the covariate’s minimum and maximum values, respectively, were Winsorized to the values shown.
Winsorization was used to prevent runaway extrapolations during prediction when covariates exceeded sampled ranges, or
for ecological reasons, depending on the covariate. /1000 indicates meters were transformed to kilometers for interpretation
convenience.
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Figure 5: Density histograms shown in Figure 4 replotted without Winsorization, to show the full range of sampling repre-
sented by survey segments.
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Figure 6: Scatterplot matrix of the covariates considered during the final model selection step. The final model may have
included only a subset of the covariates shown here (see Figure 2), and additional covariates may have been considered in
preceding selection steps. Covariates are transformed and Winsorized as shown in Figure 4. This plot is used to check simple
correlations between covariates (via pairwise Pearson coefficients above the diagonal) and visually inspect for concurvity (via
scatterplots and red lowess curves below the diagonal).
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Figure 7: Dotplot of the covariates considered during the final model selection step. The final model may have included
only a subset of the covariates shown here (see Figure 2), and additional covariates may have been considered in preceding
selection steps. Covariates are transformed and Winsorized as shown in Figure 4. This plot is used to check for suspicious
patterns and outliers in the data. Points are ordered vertically by segment ID, sequentially in time.
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2.3 Extrapolation Diagnostics

2.3.1 Univariate Extrapolation

Figure 8: NT1 statistic (Mesgaran et al. (2014)) for static covariates used in the model for the region AFTT Atlantic. Areas
outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred there.
Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 9: NT1 statistic (Mesgaran et al. (2014)) for the DistToFront1 covariate in the model for the region AFTT Atlantic.
Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred
there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 10: NT1 statistic (Mesgaran et al. (2014)) for the EpiMnkPB covariate in the model for the region AFTT Atlantic.
Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred
there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 11: NT1 statistic (Mesgaran et al. (2014)) for the SST covariate in the model for the region AFTT Atlantic. Areas
outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred there
during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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2.3.2 Multivariate Extrapolation

(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 12: ExDet statistic (Mesgaran et al. (2014)) for all of the covariates used in the model for the region AFTT Atlantic.
Areas in orange (ExDet < 0) required univariate extrapolation of one or more covariates (see previous section). Areas in
purple (ExDet > 1), did not require univariate extrapolation but did require multivariate extrapolation, by virtue of having
novel combinations of covariates not represented in the survey data, according to the NT2 statistic (Mesgaran et al. (2014)).
Areas in green (0 ≥ ExDet ≤ 1) did not require either type of extrapolation.
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3 Predictions

3.1 Summarized Predictions
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Figure 13: Mean monthly abundance for the prediction area for 1992-2020. Error bars are a 95% interval, made with a
log-normal approximation using the prediction’s CV. The CV was estimated with the analytic approach given by Miller et
al. (2022), Appendix S1, and accounts both for uncertainty in model parameter estimates and for temporal variability in
dynamic covariates.

Table 5: Mean monthly abundance and density for the prediction area for 1992-2020. CV and intervals
estimated as described for the previous figure.

Month Abundance CV 95% Interval Area (km2) Density (individuals / 100 km2)
1 7,292 0.058 6,512 - 8,165 11,025,400 0.066
2 7,035 0.064 6,202 - 7,979 11,025,400 0.064
3 7,013 0.065 6,170 - 7,972 11,025,400 0.064
4 7,410 0.059 6,596 - 8,325 11,025,400 0.067
5 8,259 0.050 7,485 - 9,112 11,025,400 0.075
6 9,544 0.041 8,812 - 10,336 11,025,400 0.087
7 11,054 0.036 10,307 - 11,856 11,025,400 0.100
8 11,672 0.036 10,884 - 12,516 11,025,400 0.106
9 11,328 0.036 10,562 - 12,149 11,025,400 0.103

10 10,133 0.037 9,415 - 10,905 11,025,400 0.092
11 8,703 0.042 8,020 - 9,444 11,025,400 0.079
12 7,708 0.049 7,003 - 8,486 11,025,400 0.070
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Figure 14: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of January for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 15: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of February for
the given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 16: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of March for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 17: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of April for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 18: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of May for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 19: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of June for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 20: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of July for the given
era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts both for
uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a Web Mercator
projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density modeling.

25



Figure 21: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of August for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 22: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of September for
the given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 23: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of October for the
given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 24: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of November for
the given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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Figure 25: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the month of December for
the given era. Variance was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts
both for uncertainty in model parameter estimates and for temporal variability in dynamic covariates. These maps use a
Web Mercator projection but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density
modeling.
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3.2 Comparison to Previous Density Model

Figure 26: Comparison of the mean density predictions from the previous model (left) released by Mannocci et al. (2017)
to those from this model (right). These maps use a Web Mercator projection but the analysis was conducted in an Albers
Equal Area coordinate system appropriate for density modeling.

4 Discussion

Following Mannocci et al. (2017), we summarized this model into 12 mean monthly density surfaces (Figures 14-25).1.
Although our figures show predictions for the entire AFTT study area, we recommend that the regional East Coast (EC)
model be used for the waters it covers, and that the AFTT model be used only for waters outside that region. NOAA SEFSC
considers fin whales to be absent in the Gulf of Mexico, despite one confirmed sighting occurring there in the 1990s (L.
Garrison and K. Mullin, pers. comm.), so no regional model was fitted there. See Roberts et al. (2023) for more discussion
of the models.

The predictions generally accorded with what has been reported in the literature and largely resembled the predictions of
Mannocci et al. (2017), but with lower density estimated nearly everywhere, leading to a total abundance that was 40%
lower than the prior model (Figure 26). We attribute this difference mainly to differences in bias corrections for aerial surveys
used by the models. The prior model used a single availability bias correction of g0 = 0.251 for all sightings and assumed
that perception bias was negligible. The new model estimated availability bias on a per-sighting basis, based on the altitude
and speed of the platform and the size of the sighted group, and perception bias based on the surveyor institution. For
sightings of a single fin whale observed by the NEFSC NARWSS program, which reported the largest number of sightings,
the availability bias correction was about g0A = 0.39 and the perception bias correction was g0P = 0.67, yielding a combined
correction of g0 = 0.261—not much different than the prior model. However, a substantial number of sightings were reported
that had larger group sizes or from survey platforms that had less of a perception bias correction. Across all aerial sightings,
the mean correction was g0 = 0.399. The prior model’s correction was 37% lower, which, all else being equal, would mostly
explain the 40% higher abundance estimated by that model.

We note that the model may underestimate density in the northernmost part of the study area. Sightings were reported by
1In the Mannocci et al. (2017) journal publication, a year-round summarization was included as supplementary information but the monthly

summarizations were not. The monthly summarizations are available on our website and are what was used in the U.S. Navy’s AFTT Phase
III Environmental Impact Statement, for which the model was originally developed. For our updated model, we have included the monthly
summarizations directly with the report you are reading.
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aerial surveys of the Labrador shelf in 2007 and 2015 (Lawson and Gosselin 2009, 2011, 2018) and of the west Greenland
shelf in the same years (Heide-Jørgensen et al. 2010; Hansen et al. 2019). Passive acoustic monitoring indicated fin whales
were acoustically present in Davis Strait in all months monitored except April-June (Davis et al. 2020). The OBIS-SEAMAP
archive (Halpin et al. 2009) reported numerous sightings along Labrador, in the Labrador Sea, and especially along western
Greenland. We urge caution in these areas. None of the surveys of Labrador or Greenland were available for use in our model;
future updates would benefit from their inclusion. We note that our model estimated a slightly negative effect on density in
waters with SST < 10 ◦C (Figure 2), while the prior model from Mannocci et al. (2017) estimated a slightly positive effect.
If our model included those surveys from cold northern waters in which fin whales were sighted, it is likely that the negative
relationship would revert to a neutral or positive relationship, and elevate density in those waters.

We also urge caution between Cape Hatteras and the Bahamas between November-February, during which months passive
acoustic monitoring reported occasional fin whale acoustic presence over the Blake Plateau (Kowarski et al. 2022). Like
the east coast regional fin whale model, our AFTT model predicted negligible density in this area during these months. We
recommend additional surveying in winter of the Blake Plateau and abyssal waters east of it.

Multivariate extrapolation analysis (Figure 12) showed that environmental extrapolation was necessary from Newfoundland
northward from October-June. Univariate extrapolation was required along the shelf of Newfoundland, Labrador, Greenland,
and the Davis Strait, owing to a lack of sampling in waters with very low sea surface temperatures. We advise caution in the
northern part of the study area during these months. Univariate extrapolation was also necessary in the southeast corner of
the study area in summer, driven by low SST front activity there during these months. However, it is likely that fin whales
are rare in that area during those months, so we do not find this extrapolation as cause for concern.
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