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1 Survey Data

Following Mannocci et al. (2017), whose model we were updating, we built this model from data collected in the east coast
and Caribbean and excluded surveys of the Gulf of Mexico, Europe, and the Mid-Atlantic Ridge for the reasons mentioned by
those authors. We did include segments south of 50 ◦N and west of 40 ◦W from a trans-Atlantic survey by R/V Song of the
Whale. Harbor porpoises are small, cryptic odontocetes that are difficult to detect from long distances or in poor conditions.
Accordingly, we excluded all surveys that did not target harbor porpoises as well as aerial surveys flown at altitudes higher
than 750 ft., which species experts within our collaboration determined was the maximum altitude they were likely to be
reliably detected without a belly observer or belly camera. Although detections at higher altitudes are possible, we lacked the
counts needed to fit detection functions unless we pooled surveys flown at lower altitudes, which species experts determined
would be inappropriate. Consistent with our regional models for the east coast, we restricted this model to survey transects
collected in sea states of Beaufort 2 or less. We also excluded transects with poor weather or visibility for surveys that
reported those conditions. Table 1 summarizes the survey effort and sightings available for the model after most exclusions
were applied. Figure 1 shows the data actually used to fit the model.

Table 1: Survey effort and observations considered for this model. Effort is tallied as the cumulative length
of on-effort transects. Observations are the number of groups and individuals encountered while on effort.
Off effort observations and those lacking an estimate of group size or distance to the group were excluded.

Effort Observations
Institution Program Period 1000s km Groups Individuals Mean Group Size

Aerial Surveys
NEFSC AMAPPS 2010-2019 23 519 1,321 2.5
NEFSC NARWSS 2003-2016 123 1,107 2,055 1.9
NEFSC Pre-AMAPPS 1999-2008 21 357 952 2.7
NJDEP NJEBS 2008-2009 6 5 8 1.6
SEFSC AMAPPS 2010-2020 38 4 5 1.2
SEFSC MATS 2002-2005 24 0 0
U. La Rochelle REMMOA 2008-2017 22 0 0
VAMSC MD DNR WEA 2013-2015 4 0 0

Total 260 1,992 4,341 2.2
Shipboard Surveys

MCR SOTW Visual 2005-2019 13 24 34 1.4
NEFSC AMAPPS 2011-2016 3 14 25 1.8
NEFSC Pre-AMAPPS 1995-2007 4 606 1,862 3.1
NJDEP NJEBS 2008-2009 4 32 58 1.8
SEFSC AMAPPS 2011-2016 5 0 0
SEFSC Pre-AMAPPS 1992-2006 9 0 0
SEFSC SEFSC Caribbean 1995-2000 2 0 0

Total 40 676 1,979 2.9

Grand Total 301 2,668 6,320 2.4

Table 2: Institutions that contributed surveys used in this model.

Institution Full Name
MCR Marine Conservation Research
NEFSC NOAA Northeast Fisheries Science Center
NJDEP New Jersey Department of Environmental Protection
SEFSC NOAA Southeast Fisheries Science Center
U. La Rochelle University of La Rochelle
VAMSC Virginia Aquarium & Marine Science Center
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Table 3: Descriptions and references for survey programs used in this model.

Program Description References
AMAPPS Atlantic Marine Assessment Program for Protected Species Palka et al. (2017), Palka et

al. (2021)
MATS Mid-Atlantic Tursiops Surveys
MD DNR WEA Aerial Surveys of the Maryland Wind Energy Area Barco et al. (2015)
NARWSS North Atlantic Right Whale Sighting Surveys Cole et al. (2007)
NJEBS New Jersey Ecological Baseline Study Geo-Marine, Inc. (2010),

Whitt et al. (2015)
Pre-AMAPPS Pre-AMAPPS Marine Mammal Abundance Surveys Mullin and Fulling (2003),

Garrison et al. (2010), Palka
(2006)

REMMOA REcensement des Mammifères marins et autre Mégafaune
pélagique par Observation Aérienne

Mannocci et al. (2013),
Laran et al. (2019)

SEFSC Caribbean SEFSC Surveys of the Caribbean Sea Mullin (1995), Swartz and
Burks (2000)

SOTW Visual R/V Song of the Whale Visual Surveys Ryan et al. (2013)
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2 Density Model

Our objective was to update the model of Mannocci et al. (2017) with new data without repeating the covariate selection
exercise performed by those authors. We therefore fitted a year-round, 4-covariate model that included depth, micronekton
productivity, zooplankton biomass, and the standard deviation of sea surface height anomaly. The resulting relationships
(Figure 2) generally resembled those of Mannocci et al.’s model (but see discussion in Section 4). Model predictions are shown
in Section 3. Univariate extrapolation analyses (Section 2.3.1) displayed geographic patterns very similar to the environmental
envelopes estimated by Mannocci et al. Little environmental extrapolation was necessary, and was driven mainly by a lack
of sampling in waters with a very low or very high standard deviation of sea level anomaly, as were found sporadically in the
Labrador Sea and shelf (very low values) and in the Gulf Stream (very high values) (Figure 11).

2.1 Final Model

Figure 1: Survey segments (black lines) used to fit the model for the region AFTT Atlantic. Red points indicate segments
with observations. This map uses a Web Mercator projection but the analysis was conducted in an Albers Equal Area
coordinate system appropriate for density modeling.

Statistical output for this model:

Family: Tweedie(p=1.387)
Link function: log

Formula:
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IndividualsCorrected ~ offset(log(SegmentArea)) + s(log10(Depth),
bs = "ts", k = 4) + s(sqrt(pmin(EpiMnkPP, 0.35)), bs = "ts",
k = 4) + s(sqrt(pmin(PkPB, 50)), bs = "ts", k = 4) + s(log10(SLAStDev),
bs = "ts", k = 4)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -19.008 0.188 -101.1 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(log10(Depth)) 2.960 3 62.65 <2e-16 ***
s(sqrt(pmin(EpiMnkPP, 0.35))) 2.897 3 70.76 <2e-16 ***
s(sqrt(pmin(PkPB, 50))) 2.910 3 227.29 <2e-16 ***
s(log10(SLAStDev)) 1.088 3 14.70 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.0581 Deviance explained = 32.8%
-REML = 9476 Scale est. = 14.922 n = 29624

Method: REML Optimizer: outer newton
full convergence after 12 iterations.
Gradient range [-1.707415e-05,2.062844e-05]
(score 9475.994 & scale 14.92173).
Hessian positive definite, eigenvalue range [0.1465804,4556.89].
Model rank = 13 / 13

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value
s(log10(Depth)) 3.00 2.96 0.76 <2e-16 ***
s(sqrt(pmin(EpiMnkPP, 0.35))) 3.00 2.90 0.80 0.055 .
s(sqrt(pmin(PkPB, 50))) 3.00 2.91 0.77 <2e-16 ***
s(log10(SLAStDev)) 3.00 1.09 0.81 0.340
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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(a) Seafloor depth (m) (b) Climatological epipelagic micronekton pro-
ductivity (g m−2 d−1)

(c) Climatological zooplankton biomass (g C
m−2)

(d) Climatological standard deviation of sea sur-
face height anomaly (m)

Figure 2: Functional plots for the final model for the region AFTT Atlantic. Transforms and other treatments are indicated
in axis labels. log10 indicates the covariate was log10 transformed. sqrt indicates the covariate was square-root transformed.
pmax and pmin indicate the covariate’s minimum and maximum values, respectively, were Winsorized to the values shown.
Winsorization was used to prevent runaway extrapolations during prediction when covariates exceeded sampled ranges, or
for ecological reasons, depending on the covariate. /1000 indicates meters were transformed to kilometers for interpretation
convenience.

Table 4: Covariates used in the final model for the region AFTT Atlantic.

Covariate Description
Depth Depth (m) of the seafloor, from SRTM30_PLUS (Becker et al. (2009))
EpiMnkPP Climatological monthly mean micronekton production in the epipelagic zone (g m−2 d−1)

from SEAPODYM (Lehodey et al. (2008); Lehodey et al. (2015))
PkPB Climatological monthly mean zooplankton biomass expressed in carbon (g C m−2) from

SEAPODYM (Lehodey et al. (2008); Lehodey et al. (2015))
SLAStDev Climatological standard deviation of sea surface height anomaly (m) derived from Aviso

Ssalto/Duacs global gridded L4 reprocessed sea surface heights, produced and distributed
by E.U. Copernicus Marine Service. doi: 10.48670/moi-00148
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2.2 Diagnostic Plots

Figure 3: Residual plots for the final model for the region AFTT Atlantic.
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Figure 4: Density histograms showing the distributions of the covariates considered during the final model selection step.
The final model may have included only a subset of the covariates shown here (see Figure 2), and additional covariates
may have been considered in preceding selection steps. Red and blue lines enclose 99% and 95% of the distributions,
respectively. Transforms and other treatments are indicated in axis labels. log10 indicates the covariate was log10 transformed.
pmax and pmin indicate the covariate’s minimum and maximum values, respectively, were Winsorized to the values shown.
Winsorization was used to prevent runaway extrapolations during prediction when covariates exceeded sampled ranges, or
for ecological reasons, depending on the covariate. /1000 indicates meters were transformed to kilometers for interpretation
convenience.
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Figure 5: Density histograms shown in Figure 4 replotted without Winsorization, to show the full range of sampling repre-
sented by survey segments.
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Figure 6: Scatterplot matrix of the covariates considered during the final model selection step. The final model may have
included only a subset of the covariates shown here (see Figure 2), and additional covariates may have been considered in
preceding selection steps. Covariates are transformed and Winsorized as shown in Figure 4. This plot is used to check simple
correlations between covariates (via pairwise Pearson coefficients above the diagonal) and visually inspect for concurvity (via
scatterplots and red lowess curves below the diagonal).
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Figure 7: Dotplot of the covariates considered during the final model selection step. The final model may have included
only a subset of the covariates shown here (see Figure 2), and additional covariates may have been considered in preceding
selection steps. Covariates are transformed and Winsorized as shown in Figure 4. This plot is used to check for suspicious
patterns and outliers in the data. Points are ordered vertically by segment ID, sequentially in time.
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2.3 Extrapolation Diagnostics

2.3.1 Univariate Extrapolation

Figure 8: NT1 statistic (Mesgaran et al. (2014)) for static covariates used in the model for the region AFTT Atlantic. Areas
outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred there.
Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 9: NT1 statistic (Mesgaran et al. (2014)) for the EpiMnkPP covariate in the model for the region AFTT Atlantic.
Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred
there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 10: NT1 statistic (Mesgaran et al. (2014)) for the PkPB covariate in the model for the region AFTT Atlantic. Areas
outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred there
during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 11: NT1 statistic (Mesgaran et al. (2014)) for the SLAStDev covariate in the model for the region AFTT Atlantic.
Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred
there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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2.3.2 Multivariate Extrapolation

(a) January (b) February (c) March (d) April

(e) May (f) June (g) July (h) August

(i) September (j) October (k) November (l) December

Figure 12: ExDet statistic (Mesgaran et al. (2014)) for all of the covariates used in the model for the region AFTT Atlantic.
Areas in orange (ExDet < 0) required univariate extrapolation of one or more covariates (see previous section). Areas in
purple (ExDet > 1), did not require univariate extrapolation but did require multivariate extrapolation, by virtue of having
novel combinations of covariates not represented in the survey data, according to the NT2 statistic (Mesgaran et al. (2014)).
Areas in green (0 ≥ ExDet ≤ 1) did not require either type of extrapolation.
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3 Predictions

3.1 Summarized Predictions

Figure 13: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for the given era. Variance was
estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts both for uncertainty in model
parameter estimates and for temporal variability in dynamic covariates. These maps use a Web Mercator projection but the
analysis was conducted in an Albers Equal Area coordinate system appropriate for density modeling.
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3.2 Comparison to Previous Density Model

Figure 14: Comparison of the mean density predictions from the previous model (left) released by Mannocci et al. (2017)
to those from this model (right). These maps use a Web Mercator projection but the analysis was conducted in an Albers
Equal Area coordinate system appropriate for density modeling.

4 Discussion

Following Mannocci et al. (2017), we summarized this model into a single year-round mean density surface (Figure 13).
Although our figures show predictions for the entire AFTT study area, we recommend that the regional East Coast (EC)
model be used for the waters it covers, and that the AFTT model be used only for waters outside that region. The EC model
provides predictions as 12 monthly means, rather than a single year-round mean. Harbor porpoises are absent in the Gulf of
Mexico, so no regional model was fitted there. See Roberts et al. (2023) for more discussion of the models.

The predictions generally accorded with what has been reported in the literature and strongly resembled the predictions of
Mannocci et al. (2017) for the continental shelf but estimated much lower density beyond the shelf, leading to to a total
abundance estimate that was about 55% lower (Figure 14). The predictions of harbor porpoise presence along the shelf of
Newfoundland and Labrador were supported by sightings reported by aerial surveys in 2007 and 2015 (Lawson and Gosselin
2009, 2011, 2018). The predictions of presence along the shelf of west Greenland were supported by sightings reported by
aerial surveys there in 2007 (Hansen and Heide-Jørgensen 2013). None of these surveys were available for use in our model;
future updates would benefit from their inclusion. Please see the harbor porpoise report from Mannocci et al. (2017) for
additional discussion of the literature.

The differing predictions beyond the continental shelf are a concern. The difference was driven by the relationship fitted to
the depth covariate. In Mannocci et al. (2017), depth showed a positive effect on density in waters deeper than about 1000
m (about 3.0 in log10 scale), but in our model remained negative throughout this range. Our model benefited from additional
off-shelf shipboard surveys, mainly from NOAA AMAPPS and MCR (Table 1). Nearly all of the sightings reported by these
surveys were made on transects that occurred over the shelf or at the shelf break. This additional absence data beyond the
shelf drove down the depth relationship there, yielding lower predicted densities. Despite this additional data—which, in
principle, reduces uncertainty about porpoise density beyond the shelf—we advise caution in northern off-shelf waters such
as the Labrador Sea, as none of the surveys occurred there and model predictions represent a geographical extrapolation. At
the time of this writing, the OBIS-SEAMAP archive (Halpin et al. 2009) reported several sightings in off-shelf waters there.
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