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1 Survey Data

Following Mannocci et al. (2017), whose model we were updating, we built this model from data collected in the east
coast and Caribbean regions and excluded surveys of Europe and the Mid-Atlantic Ridge. Breaking with those authors, we
excluded data from the Gulf of Mexico, as humpbacks do not inhabit it. We did include segments south of 50 ◦N and west of
40 ◦W from a trans-Atlantic survey by R/V Song of the Whale. We excluded surveys that did not target humpback whales
or were otherwise problematic for modeling them. We restricted the model to survey transects with sea states of Beaufort
5 or less (for a few surveys we used Beaufort 4 or less) for both aerial and shipboard surveys. We also excluded transects
with poor weather or visibility for surveys that reported those conditions. Table 1 summarizes the survey effort and sightings
available after most exclusions were applied.

Table 1: Survey effort and observations considered for this model. Effort is tallied as the cumulative length
of on-effort transects. Observations are the number of groups and individuals encountered while on effort.
Off effort observations and those lacking an estimate of group size or distance to the group were excluded.

Effort Observations
Institution Program Period 1000s km Groups Individuals Mean Group Size

Aerial Surveys
FWRI SEUS NARW EWS 2003-2020 668 56 56 1.0
HDR Navy Norfolk Canyon 2018-2019 11 9 22 2.4
NEAq CNM 2017-2020 2 2 2 1.0
NEAq MMS-WEA 2017-2020 32 37 78 2.1
NEAq NLPSC 2011-2015 43 59 124 2.1
NEAq SEUS NARW EWS 2003-2010 227 8 8 1.0
NEFSC AMAPPS 2010-2019 89 148 195 1.3
NEFSC NARWSS 2003-2020 471 3,241 6,582 2.0
NEFSC Pre-AMAPPS 1999-2008 46 113 153 1.4
NJDEP NJEBS 2008-2009 11 3 5 1.7
NYS-DEC/TT NYBWM 2017-2020 77 57 159 2.8
SEFSC AMAPPS 2010-2020 114 15 20 1.3
SEFSC MATS 1995-2005 34 4 4 1.0
SEFSC SECAS 1992-1995 8 0 0
U. La Rochelle REMMOA 2008-2017 42 7 9 1.3
UNCW Navy Cape Hatteras 2011-2017 34 6 9 1.5
UNCW Navy Jacksonville 2009-2017 92 2 2 1.0
UNCW Navy Norfolk Canyon 2015-2017 14 3 4 1.3
UNCW Navy Onslow Bay 2007-2011 49 1 2 2.0
VAMSC MD DNR WEA 2013-2015 16 2 2 1.0
VAMSC Navy VACAPES 2016-2017 19 7 8 1.1
VAMSC VA CZM WEA 2012-2015 21 12 20 1.7
WLT/SSA/CMARI SEUS NARW EWS 2003-2020 652 45 50 1.1

Total 2,775 3,837 7,514 2.0
Shipboard Surveys

MCR SOTW Visual 2012-2019 9 20 33 1.6
NEFSC AMAPPS 2011-2016 16 124 178 1.4
NEFSC Pre-AMAPPS 1995-2007 18 202 331 1.6
NJDEP NJEBS 2008-2009 14 7 9 1.3
SEFSC AMAPPS 2011-2016 17 1 1 1.0
SEFSC Pre-AMAPPS 1992-2006 33 0 0
SEFSC SEFSC Caribbean 1995-2000 8 31 50 1.6

Total 115 385 602 1.6

Grand Total 2,889 4,222 8,116 1.9
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Table 2: Institutions that contributed surveys used in this model.

Institution Full Name
FWRI FWC Fish and Wildlife Research Institute
HDR HDR, Inc.
MCR Marine Conservation Research
NEAq New England Aquarium
NEFSC NOAA Northeast Fisheries Science Center
NJDEP New Jersey Department of Environmental Protection
NYS-DEC/TT New York State Department of Environmental Conservation and Tetra Tech, Inc.
SEFSC NOAA Southeast Fisheries Science Center
U. La Rochelle University of La Rochelle
UNCW University of North Carolina Wilmington
VAMSC Virginia Aquarium & Marine Science Center
WLT/SSA/CMARI Wildlife Trust, Sea to Shore Alliance, and Clearwater Marine Aquarium Research Institute

Table 3: Descriptions and references for survey programs used in this model.

Program Description References
AMAPPS Atlantic Marine Assessment Program for Protected Species Palka et al. (2017), Palka et

al. (2021)
CNM Northeast Canyons Marine National Monument Aerial

Surveys
Redfern et al. (2021)

MATS Mid-Atlantic Tursiops Surveys
MD DNR WEA Aerial Surveys of the Maryland Wind Energy Area Barco et al. (2015)
MMS-WEA Marine Mammal Surveys of the MA and RI Wind Energy

Areas
Quintana-Rizzo et al.
(2021), O’Brien et al. (2022)

NARWSS North Atlantic Right Whale Sighting Surveys Cole et al. (2007)
Navy Cape Hatteras Aerial Surveys of the Navy’s Cape Hatteras Study Area McLellan et al. (2018)
Navy Jacksonville Aerial Surveys of the Navy’s Jacksonville Study Area Foley et al. (2019)
Navy Norfolk Canyon Aerial Surveys of the Navy’s Norfolk Canyon Study Area Cotter (2019), McAlarney et

al. (2018)
Navy Onslow Bay Aerial Surveys of the Navy’s Onslow Bay Study Area Read et al. (2014)
Navy VACAPES Aerial Survey Baseline Monitoring in the Continental Shelf

Region of the VACAPES OPAREA
Mallette et al. (2017)

NJEBS New Jersey Ecological Baseline Study Geo-Marine, Inc. (2010),
Whitt et al. (2015)

NLPSC Northeast Large Pelagic Survey Collaborative Aerial Surveys Leiter et al. (2017), Stone et
al. (2017)

NYBWM New York Bight Whale Monitoring Surveys Zoidis et al. (2021)
Pre-AMAPPS Pre-AMAPPS Marine Mammal Abundance Surveys Mullin and Fulling (2003),

Garrison et al. (2010), Palka
(2006)

REMMOA REcensement des Mammifères marins et autre Mégafaune
pélagique par Observation Aérienne

Mannocci et al. (2013),
Laran et al. (2019)

SECAS Southeast Cetacean Aerial Surveys Blaylock and Hoggard
(1994)

SEFSC Caribbean SEFSC Surveys of the Caribbean Sea Mullin (1995), Swartz and
Burks (2000)
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Table 3: Descriptions and references for survey programs used in this model. (continued)

Program Description References

SEUS NARW EWS Southeast U.S. Right Whale Early Warning System Surveys Gowan and Ortega-Ortiz
(2014)

SOTW Visual R/V Song of the Whale Visual Surveys Ryan et al. (2013)
VA CZM WEA Virginia CZM Wind Energy Area Surveys Mallette et al. (2014),

Mallette et al. (2015)

2 Density Model

Our objective was to update the model of Mannocci et al. (2017) with new data without adjusting the model’s overall
structure or repeating the covariate selection exercise performed by those authors. Humpback whales are highly migratory
and exhibit a distinct seasonality in the western North Atlantic. For this reason, Mannocci et al. split the year into two
seasons—Winter (December-March) and Summer (April-November)—and fitted an independent model for each. We followed
this decision; for further details about it, please see the supplementary report for humpback whales in that publication1, and
also that for our updated east coast model (version 11). We present the details for each updated seasonal model below. We
present the summarized predictions in Section 3 and discuss them in Section 4.

2.1 Winter (December-March)

Following Mannocci et al., we fitted a single-covariate model relating density to sea surface temperature (SST). The resulting
relationship (Figure 2) resembled the general “U” shape obtained by Mannocci et al., but was much less flat. A positive
influence on density was indicated above about 22 ◦C and below about 15 ◦C, with a negative influence in between. This result
reflected the splitting of the population between the warm calving grounds in the Caribbean islands, where a large fraction of
the population migrates to in winter, and the cold feeding grounds along the North American coast, where a fraction remains
to overwinter, although photographic evidence suggests not all of the whales here are from the Gulf of Maine stock that feeds
in the region in summer (Barco 2002; Brown et al. 2022). Please see the east coast humpback whale report (version 11)
for additional discussion. Extrapolation analysis (Section 2.1.3) showed that the necessity for environmental extrapolation
was driven by a lack of sampling in waters with very low sea surface temperatures (Figure 6), as occurs along the shelf of
Newfoundland, Labrador, and Greenland. This geographic pattern was very similar to the environmental envelope estimated
by Mannocci et al.

1The publication, Mannocci et al. (2017), only included the supplementary report for their summer model. The report for their winter model
is available on our website.
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2.1.1 Final Model

Figure 1: Survey segments (black lines) used to fit the model for the region AFTT Atlantic for Winter. Red points indicate
segments with observations. This map uses a Web Mercator projection but the analysis was conducted in an Albers Equal
Area coordinate system appropriate for density modeling.

Statistical output for this model:

Family: Tweedie(p=1.115)
Link function: log

Formula:
IndividualsCorrected ~ offset(log(SegmentArea)) + s(SST, bs = "ts",

k = 4)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -23.1938 0.0879 -263.9 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(SST) 2.985 3 179 <2e-16 ***

5



---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.00708 Deviance explained = 16.7%
-REML = 2990.2 Scale est. = 5.5906 n = 192343

Method: REML Optimizer: outer newton
full convergence after 11 iterations.
Gradient range [-0.00140242,0.0007144137]
(score 2990.227 & scale 5.590598).
Hessian positive definite, eigenvalue range [1.456598,4013.797].
Model rank = 4 / 4

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value
s(SST) 3.00 2.98 0.81 0.025 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Figure 2: Functional plots for the final model for the region AFTT Atlantic for Winter. Transforms and other treatments
are indicated in axis labels. log10 indicates the covariate was log10 transformed. sqrt indicates the covariate was square-root
transformed. /1000 indicates meters were transformed to kilometers for interpretation convenience.

Table 4: Covariates used in the final model for the region AFTT Atlantic for Winter.

Covariate Description
SST Climatological monthly mean sea surface temperature (◦C) from GHRSST Level 4

CMC0.2deg (Brasnett (2008); Canada Meteorological Center (2012))
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2.1.2 Diagnostic Plots

Figure 3: Residual plots for the final model for the region AFTT Atlantic for Winter.
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Figure 4: Density histograms showing the distributions of the covariates considered during the final model selection step.
The final model may have included only a subset of the covariates shown here (see Figure 2), and additional covariates may
have been considered in preceding selection steps. Red and blue lines enclose 99% and 95% of the distributions, respectively.
Transforms and other treatments are indicated in axis labels. log10 indicates the covariate was log10 transformed. /1000
indicates meters were transformed to kilometers for interpretation convenience.
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Figure 5: Dotplot of the covariates considered during the final model selection step. The final model may have included
only a subset of the covariates shown here (see Figure 2), and additional covariates may have been considered in preceding
selection steps. Covariates are transformed as shown in Figure 4. This plot is used to check for suspicious patterns and
outliers in the data. Points are ordered vertically by segment ID, sequentially in time.
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2.1.3 Extrapolation Diagnostics

(a) December (b) January

(c) February (d) March

Figure 6: NT1 statistic (Mesgaran et al. (2014)) for the SST covariate in the model for the region AFTT Atlantic for Winter.
Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate occurred
there during the month. Areas within the sampled range appear in gray, indicating it did not occur.

2.2 Summer (April-November)

Following Mannocci et al., we fitted a 4-covariate model that included chlorophyll concentration, depth of the sea floor,
distance to SST fronts, and the standard deviation of sea level anomaly. All covariates were retained during smoothness
selection but moderately different relationships were fitted to all covariates except for chlorophyll concentration (Figure 8),
for which the fit was essentially the same as Mannocci et al.’s model. The covariate that yielded the largest difference in
the predictions was depth. In Mannocci’s model the depth relationship was hump-shaped like ours, but turned strongly
positive for depths deeper than 3.3 on the log10 scale (about 2000 m), while in ours it remained slightly negative. This drove
predictions in Mannocci’s model to much higher levels beyond the continental shelf than occurred with our model (Figure
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21). We discuss this result further in Section 4. The distance to fronts covariate was shaped similarly in the two models, but
was substantially higher in Mannocci’s model at very low values, essentially corresponding to grid cells that occurred directly
on persistent SST fronts. This did not make a substantial difference in the predictions, as such locations are relatively rare.
Finally, the standard deviation of sea level anomaly covariate was hump-shaped in Mannocci’s model but linear in our model.
This led to strong deviations between the models in regions of high sea level anomalies, such as the Gulf Stream, where in
Mannocci’s model the relationship pulled density strongly down, while in our model it boosted density slightly up. This
allowed density in our model to remain slightly above negligible values just north of the Gulf Stream, while in Mannocci’s,
the relationship forced density down in such highly dynamic areas.

Univariate extrapolation analyses (Section 2.2.3.1) displayed geographic patterns very similar to the environmental envelopes
estimated by Mannocci et al. except for the depth covariate, for which the trans-Atlantic survey by R/V Song of the Whale
used in our model provided sampling at much deeper depths than the surveys available for Mannocci’s model. In our model
the necessity for univariate environmental extrapolation was driven mainly by a lack of sampling in waters with with very
low chlorophyll concentration (Figure 14) or few SST fronts, (Figure 15) as occurs in the southeast of the AFTT study area.
We found this outcome no cause for concern, as humpbacks are almost never found in such warm, southerly waters during
the summer feeding season. Small patches of univariate extrapolation of the sea level anomaly covariate occurred in waters
around Labrador, driven by very low values of the covariate. We advise caution with predictions in this area, as discussed in
Section 4.

2.2.1 Final Model

Figure 7: Survey segments (black lines) used to fit the model for the region AFTT Atlantic for Summer. Red points indicate
segments with observations. This map uses a Web Mercator projection but the analysis was conducted in an Albers Equal
Area coordinate system appropriate for density modeling.
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Statistical output for this model:

Family: Tweedie(p=1.282)
Link function: log

Formula:
IndividualsCorrected ~ offset(log(SegmentArea)) + s(log10(Depth),

bs = "ts", k = 4) + s(Chl1, bs = "ts", k = 4) + s(log10(I(DistToFront1/1000)),
bs = "ts", k = 4) + s(log10(SLAStDev), bs = "ts", k = 4)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.24956 0.07884 -269.5 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:
edf Ref.df F p-value

s(log10(Depth)) 2.9868 3 200.795 < 2e-16 ***
s(Chl1) 2.8450 3 174.530 < 2e-16 ***
s(log10(I(DistToFront1/1000))) 1.9150 3 32.905 < 2e-16 ***
s(log10(SLAStDev)) 0.9581 3 4.442 0.000151 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.0227 Deviance explained = 20%
-REML = 15749 Scale est. = 11.069 n = 125123

Method: REML Optimizer: outer newton
full convergence after 11 iterations.
Gradient range [-0.0002893464,0.0002834348]
(score 15749.25 & scale 11.06878).
Hessian positive definite, eigenvalue range [0.2792042,11415.33].
Model rank = 13 / 13

Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k’.

k’ edf k-index p-value
s(log10(Depth)) 3.000 2.987 0.75 0.005 **
s(Chl1) 3.000 2.845 0.77 0.020 *
s(log10(I(DistToFront1/1000))) 3.000 1.915 0.79 0.180
s(log10(SLAStDev)) 3.000 0.958 0.80 0.365
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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(a) Climatological chlorophyll a concentration
(log10 mg m−3)

(b) Seafloor depth (m) (c) Climatological distance to SST front (km)

(d) Climatological standard deviation of sea sur-
face height anomaly (m)

Figure 8: Functional plots for the final model for the region AFTT Atlantic for Summer. Transforms and other treatments
are indicated in axis labels. log10 indicates the covariate was log10 transformed (Chl1 was already provided in log10 scale by
the covariate developer). sqrt indicates the covariate was square-root transformed. /1000 indicates meters were transformed
to kilometers for interpretation convenience.

Table 5: Covariates used in the final model for the region AFTT Atlantic for Summer.

Covariate Description
Chl1 Climatological mean monthly merged SeaWiFS/Aqua/MERIS/VIIRS chlorophyll-a

concentration (log10 mg m−3) from GSM (Maritorena et al. (2010)), smoothed with 3D
Gaussian smoother to reduce daily data loss to < 10%

Depth Depth (m) of the seafloor, from SRTM30_PLUS (Becker et al. (2009))
DistToFront1 Climatological monthly mean distance (km) to the closest sea surface temperature front

detected in daily GHRSST Level 4 CMC0.2deg images (Brasnett (2008); Canada
Meteorological Center (2012)) with MGET’s implementation of the Canny edge detector
(Roberts et al. (2010); Canny (1986))

SLAStDev Climatological standard deviation of sea surface height anomaly (m) derived from Aviso
Ssalto/Duacs global gridded L4 reprocessed sea surface heights, produced and distributed
by E.U. Copernicus Marine Service. doi: 10.48670/moi-00148
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2.2.2 Diagnostic Plots

Figure 9: Residual plots for the final model for the region AFTT Atlantic for Summer.
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Figure 10: Density histograms showing the distributions of the covariates considered during the final model selection step.
The final model may have included only a subset of the covariates shown here (see Figure 8), and additional covariates may
have been considered in preceding selection steps. Red and blue lines enclose 99% and 95% of the distributions, respectively.
Transforms and other treatments are indicated in axis labels. log10 indicates the covariate was log10 transformed. /1000
indicates meters were transformed to kilometers for interpretation convenience.
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Figure 11: Scatterplot matrix of the covariates considered during the final model selection step. The final model may have
included only a subset of the covariates shown here (see Figure 8), and additional covariates may have been considered in
preceding selection steps. Covariates are transformed as shown in Figure 10. This plot is used to check simple correlations
between covariates (via pairwise Pearson coefficients above the diagonal) and visually inspect for concurvity (via scatterplots
and red lowess curves below the diagonal).
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Figure 12: Dotplot of the covariates considered during the final model selection step. The final model may have included
only a subset of the covariates shown here (see Figure 8), and additional covariates may have been considered in preceding
selection steps. Covariates are transformed as shown in Figure 10. This plot is used to check for suspicious patterns and
outliers in the data. Points are ordered vertically by segment ID, sequentially in time.
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2.2.3 Extrapolation Diagnostics

2.2.3.1 Univariate Extrapolation

Figure 13: NT1 statistic (Mesgaran et al. (2014)) for static covariates used in the model for the region AFTT Atlantic for
Summer. Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate
occurred there. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) April (b) May (c) June (d) July

(e) August (f) September (g) October (h) November

Figure 14: NT1 statistic (Mesgaran et al. (2014)) for the Chl1 covariate in the model for the region AFTT Atlantic for
Summer. Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate
occurred there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) April (b) May (c) June (d) July

(e) August (f) September (g) October (h) November

Figure 15: NT1 statistic (Mesgaran et al. (2014)) for the DistToFront1 covariate in the model for the region AFTT Atlantic
for Summer. Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that
covariate occurred there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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(a) April (b) May (c) June (d) July

(e) August (f) September (g) October (h) November

Figure 16: NT1 statistic (Mesgaran et al. (2014)) for the SLAStDev covariate in the model for the region AFTT Atlantic for
Summer. Areas outside the sampled range of a covariate appear in color, indicating univariate extrapolation of that covariate
occurred there during the month. Areas within the sampled range appear in gray, indicating it did not occur.
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2.2.3.2 Multivariate Extrapolation

(a) April (b) May (c) June (d) July

(e) August (f) September (g) October (h) November

Figure 17: ExDet statistic (Mesgaran et al. (2014)) for all of the covariates used in the model for the region AFTT Atlantic
for Summer. Areas in orange (ExDet < 0) required univariate extrapolation of one or more covariates (see previous section).
Areas in purple (ExDet > 1), did not require univariate extrapolation but did require multivariate extrapolation, by virtue
of having novel combinations of covariates not represented in the survey data, according to the NT2 statistic (Mesgaran et
al. (2014)). Areas in green (0 ≥ ExDet ≤ 1) did not require either type of extrapolation.
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3 Predictions

3.1 Summarized Predictions

3.1.1 Winter (December-March)

Figure 18: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for Winter the given era. Variance
was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts both for uncertainty in
model parameter estimates and for temporal variability in dynamic covariates. These maps use a Web Mercator projection
but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density modeling.
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3.1.2 Summer (April-November)

Figure 19: Survey effort and observations (top left), predicted density with observations (top right), predicted density without
observations (bottom right), and coefficient of variation of predicted density (bottom left), for Summer the given era. Variance
was estimated with the analytic approach given by Miller et al. (2022), Appendix S1, and accounts both for uncertainty in
model parameter estimates and for temporal variability in dynamic covariates. These maps use a Web Mercator projection
but the analysis was conducted in an Albers Equal Area coordinate system appropriate for density modeling.

23



3.2 Comparison to Previous Density Model

3.2.1 Winter (December-March)

Figure 20: Comparison of the mean density predictions from the previous model (left) to those from this model (right) for
the Winter season (December-March). These maps use a Web Mercator projection but the analysis was conducted in an
Albers Equal Area coordinate system appropriate for density modeling.

3.2.2 Summer (April-November)

Figure 21: Comparison of the mean density predictions from the previous model (left) to those from this model (right) for
the Summer season (April-November). These maps use a Web Mercator projection but the analysis was conducted in an
Albers Equal Area coordinate system appropriate for density modeling.
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4 Discussion

Following Mannocci et al. (2017), we summarized this model into two mean seasonal density surfaces (Figures 18, 19).
Although our figures show predictions for the entire AFTT study area, we recommend that the regional East Coast (EC)
model be used for the waters it covers, and that the AFTT model be used only for waters outside that region. Humpback
whales are absent in the Gulf of Mexico, so no regional model was fitted there. See Roberts et al. (2023) for more discussion
of the models.

The predictions generally accorded with what has been reported in the literature and generally resembled the predictions
of Mannocci et al. (2017), but with some important differences in both seasons (Figures 20, 21). In winter, our model
estimated negligible density beyond the continental shelf roughly between latitudes 30-40 ◦N while Mannocci’s estimated low
density across the region. While our model’s predictions are consistent with what is known about the humpback’s winter
distribution, which is split between calving grounds around Caribbean islands and feeding grounds along the North American
shelf, we caution that very little surveying has been done in distant offshore waters of the AFTT study area, particularly in
winter. We also note that migrating humpbacks cross through this zone (Kennedy et al. 2014). Both models predicted non-
negligible density across the most northern waters. This prediction was supported on the continental shelf by passive acoustic
monitoring in Labrador and the Davis Strait (Davis et al. 2020; Delarue et al. 2022). The predictions of non-negligible
density in off-shelf waters of the Labrador Sea is not consistent with the species’ ecology, but no winter surveying has been
done there so no data exist to refute this prediction or better calibrate the model there. Mean abundance estimated by our
updated model was 20% lower than that of Mannocci’s model, largely due to the difference at latitudes 30-40 ◦N, but the
total abundance difference was not statistically significant. If potentially harmful activities are planned for those latitudes
during these months, we advise caution and that a broad-scale survey program be initiated to better characterize cetacean
density there.

In summer, the biggest difference between the models concerned predictions beyond the continental shelf, from Cape Hatteras
through the Labrador Sea, where Mannocci’s model predicted densities similar to or higher than those predicted on the shelf,
while our model predicted much lower densities. The models differed substantially on the shelf of northern Newfoundland
through Labrador and the Davis Strait. These differences were driven by different relationships fitted to the depth covariate
in the two models (see Section 2.2). The predictions of our updated model were supported by sightings reported by aerial
surveys of the Newfoundland and Labrador shelf in 2007 and 2015 (Lawson and Gosselin 2009, 2011, 2018). Surveys
of the west Greenland shelf were made in the same years and also reported humpbacks (Heide-Jørgensen et al. 2010;
Hansen et al. 2019). None of these surveys were available for use in our model; future updates would benefit from their
inclusion. Predictions in these northern shelf areas were also supported by passive acoustic monitoring (Davis et al. 2020;
Delarue et al. 2022) and opportunistic sightings reported in the OBIS-SEAMAP archive (Halpin et al. 2009) (https:
//seamap.env.duke.edu/species/180530). In general, the new model’s prediction of higher density on the shelf than in the
Labrador Sea better accords with the known ecology of the species than the old model’s prediction of the opposite pattern.
The new model did predict about 16% lower mean abundance but the difference from the old model was not statistically
significant.
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