# Density Model for Killer Whale (Orcinus orca) for the U.S. East Coast: Supplementary Report 

Duke University Marine Geospatial Ecology Lab*

Model Version 1.2-2015-09-26

## Citation

When referencing our methodology or results generally, please cite our open-access article:
Roberts JJ, Best BD, Mannocci L, Fujioka E, Halpin PN, Palka DL, Garrison LP, Mullin KD, Cole TVN, Khan CB, McLellan WM, Pabst DA, Lockhart GG (2016) Habitat-based cetacean density models for the U.S. Atlantic and Gulf of Mexico. Scientific Reports 6: 22615. doi: 10.1038/srep22615

To reference this specific model or Supplementary Report, please cite:
Roberts JJ, Best BD, Mannocci L, Fujioka E, Halpin PN, Palka DL, Garrison LP, Mullin KD, Cole TVN, Khan CB, McLellan WM, Pabst DA, Lockhart GG (2015) Density Model for Killer Whale (Orcinus orca) for the U.S. East Coast Version 1.2, 2015-09-26, and Supplementary Report. Marine Geospatial Ecology Lab, Duke University, Durham, North Carolina.

## Copyright and License



This document and the accompanying results are © 2015 by the Duke University Marine Geospatial Ecology Laboratory and are licensed under a Creative Commons Attribution 4.0 International License.

## Revision History

| Version | Date | Description of changes |
| :--- | :--- | :--- |
| 1 | $2015-01-31$ | Initial version. |
| 1.1 | $2015-05-14$ | Updated calculation of CVs. Switched density rasters to logarithmic breaks. No changes |
| 1.2 | $2015-09-26$ | to the model. |

[^0]| Survey | Period | Length (1000 km) | Hours | Sightings |
| :---: | :---: | :---: | :---: | :---: |
| NEFSC Aerial Surveys | 1995-2008 | 70 | 412 | 0 |
| NEFSC NARWSS Harbor Porpoise Survey | 1999-1999 | 6 | 36 | 0 |
| NEFSC North Atlantic Right Whale Sighting Survey | 1999-2013 | 432 | 2330 | 2 |
| NEFSC Shipboard Surveys | 1995-2004 | 16 | 1143 | 2 |
| NJDEP Aerial Surveys | 2008-2009 | 11 | 60 | 0 |
| NJDEP Shipboard Surveys | 2008-2009 | 14 | 836 | 0 |
| SEFSC Atlantic Shipboard Surveys | 1992-2005 | 28 | 1731 | 0 |
| SEFSC Mid Atlantic Tursiops Aerial Surveys | 1995-2005 | 35 | 196 | 0 |
| SEFSC Southeast Cetacean Aerial Surveys | 1992-1995 | 8 | 42 | 0 |
| UNCW Cape Hatteras Navy Surveys | 2011-2013 | 19 | 125 | 0 |
| UNCW Early Marine Mammal Surveys | 2002-2002 | 18 | 98 | 0 |
| UNCW Jacksonville Navy Surveys | 2009-2013 | 66 | 402 | 0 |
| UNCW Onslow Navy Surveys | 2007-2011 | 49 | 282 | 0 |
| UNCW Right Whale Surveys | 2005-2008 | 114 | 586 | 0 |
| Virginia Aquarium Aerial Surveys | 2012-2014 | 9 | 53 | 0 |
| Total |  | 895 | 8332 | 4 |

Table 2: Survey effort and sightings used in this model. Effort is tallied as the cumulative length of on-effort transects and hours the survey team was on effort. Sightings are the number of on-effort encounters of the modeled species for which a perpendicular sighting distance (PSD) was available. Off effort sightings and those without PSDs were omitted from the analysis.

| Season | Months | Length (1000 km) | Hours | Sightings |
| :--- | :--- | ---: | ---: | ---: |
| All_Year | All | 897 | 8332 | 4 |

Table 3: Survey effort and on-effort sightings having perpendicular sighting distances.


Figure 1: Killer whale sightings and survey tracklines.


Figure 2: Aerial linear survey effort per unit area.


Figure 3: Killer whale sightings per unit aerial linear survey effort.


Figure 4: Shipboard linear survey effort per unit area.


Figure 5: Killer whale sightings per unit shipboard linear survey effort.


Figure 6: Effective survey effort per unit area, for all surveys combined. Here, effort is corrected by the species- and survey-program-specific detection functions used in fitting the density models.


Figure 7: Killer whale sightings per unit of effective survey effort, for all surveys combined. Here, effort is corrected by the species- and survey-program-specific detection functions used in fitting the density models.

## Detection Functions

The detection hierarchy figures below show how sightings from multiple surveys were pooled to try to achieve Buckland et. al's (2001) recommendation that at least $60-80$ sightings be used to fit a detection function. Leaf nodes, on the right, usually represent individual surveys, while the hierarchy to the left shows how they have been grouped according to how similar we believed the surveys were to each other in their detection performance.

At each node, the red or green number indicates the total number of sightings below that node in the hierarchy, and is colored green if 70 or more sightings were available, and red otherwise. If a grouping node has zero sightings-i.e. all of the surveys within it had zero sightings-it may be collapsed and shown as a leaf to save space.

Each histogram in the figure indicates a node where a detection function was fitted. The actual detection functions do not appear in this figure; they are presented in subsequent sections. The histogram shows the frequency of sightings by perpendicular sighting distance for all surveys contained by that node. Each survey (leaf node) recieves the detection function that is closest to it up the hierarchy. Thus, for common species, sufficient sightings may be available to fit detection functions deep in the hierarchy, with each function applying to only a few surveys, thereby allowing variability in detection performance between surveys to be addressed relatively finely. For rare species, so few sightings may be available that we have to pool many surveys together to try to meet Buckland's recommendation, and fit only a few coarse detection functions high in the hierarchy.

A blue Proxy Species tag indicates that so few sightings were available that, rather than ascend higher in the hierarchy to a point that we would pool grossly-incompatible surveys together, (e.g. shipboard surveys that used big-eye binoculars with those that used only naked eyes) we pooled sightings of similar species together instead. The list of species pooled is given in following sections.

## Shipboard Surveys



Figure 8: Detection hierarchy for shipboard surveys

## Binocular Surveys

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 8 |
| Balaenoptera acutorostrata | Minke whale | 4 |
| Balaenoptera borealis | Sei whale | 4 |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 6 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 21 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 98 |
| Eubalaena glacialis | North Atlantic right whale | 4 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 46 |
| Orcinus orca | Killer whale | 16 |
| Total |  | 207 |

Table 4: Proxy species used to fit detection functions for Binocular Surveys. The number of sightings, $n$, is before truncation.

The sightings were right truncated at 5500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| size | Estimated size (number of individuals) of the sighted group. |
| vessel | Vessel from which the observation was made. This covariate allows the detection <br> function to account for vessel-specific biases, such as the height of the survey <br> platform. |

Table 5: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hr | poly | 2 |  | Yes | 0.00 | 1242 |
| hr | poly | 4 |  | Yes | 0.30 | 1229 |
| hr |  |  |  | Yes | 1.55 | 1436 |
| hr |  |  | beaufort | Yes | 3.54 | 1439 |
| hn | $\cos$ | 2 |  | Yes | 3.91 | 1779 |
| hr |  |  | vessel | Yes | 6.82 | 1585 |
| hr |  |  | beaufort, vessel | Yes | 8.65 | 1612 |
| hn | $\cos$ | 3 |  | Yes | 11.95 | 1743 |
| hn |  |  | vessel | Yes | 19.94 | 2284 |


| hn |  | Yes | 22.38 | 2297 |
| :--- | :--- | :--- | :--- | :--- |
| hn | beaufort | Yes | 24.09 | 2296 |
| hn | size | Yes | 24.31 | 2391 |
| hn | beaufort, size | Yes | 26.18 | 2393 |
| hn | herm | 4 |  | No |
| hr |  | Nize |  |  |
| hn | beaufort, vessel | No |  |  |
| hr | beaufort, size | No |  |  |
| hn | vessel, size | No |  |  |
| hr | vessel, size | no |  |  |
| hr |  | beaufort, vessel, size | No |  |

Table 6: Candidate detection functions for Binocular Surveys. The first one listed was selected for the density model.


Figure 9: Detection function for Binocular Surveys that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : }19
Distance range : 0 - 5500
AIC : 3236.988
```

Detection function:
Hazard-rate key function with simple polynomial adjustment term of order 2

Detection function parameters
Scale Coefficients:
estimate se
(Intercept) 6.2080350 .3983556

Shape parameters:
estimate se
(Intercept) 7.232938e-08 0.2156364

Adjustment term parameter(s):
estimate se
poly, order $2-0.80836840 .2376731$

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2257848 | 0.03930841 | 0.1740968 |
| $N$ in covered region | 876.9410383 | 162.22190631 | 0.1849861 |

Monotonicity constraints were enforced.
Additional diagnostic plots:
beaufort vs. Distance, without right trunc.

beaufort vs. Distance, right trunc. at 5500 m


Figure 10: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.

Group Size Frequency, without right trunc.


Group Size Frequency, right trunc. at 5500 m


Group Size vs. Distance, without right trunc.


Group Size vs. Distance, right trunc. at 5500 m


Figure 11: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## Low Platforms

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | :---: |
| Balaenoptera | Balaenopterid sp. | 1 |
| Balaenoptera acutorostrata | Minke whale | 3 |


| Balaenoptera borealis | Sei whale | 4 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 5 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 7 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 86 |
| Eubalaena glacialis | North Atlantic right whale | 3 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 23 |
| Orcinus orca | Killer whale | 12 |
| Total |  | 144 |

Table 7: Proxy species used to fit detection functions for Low Platforms. The number of sightings, n, is before truncation.

The sightings were right truncated at 5500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| size | Estimated size (number of individuals) of the sighted group. |
| vessel | Vessel from which the observation was made. This covariate allows the detection <br> function to account for vessel-specific biases, such as the height of the survey <br> platform. |

Table 8: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta$ AIC | Mean ESHW (m) |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: |
| hr |  |  |  | Yes | 0.00 | 1513 |
| hn | cos | 2 |  | Yes | 0.75 | 1702 |
| hr | poly | 4 |  | Yes | 1.76 | 1486 |
| hr | poly | 2 |  | Yes | 1.80 | 1481 |
| hr |  |  | vessel | Yes | 2.52 | 1684 |
| hn | cos | 3 |  | Yes | 11.32 | 1722 |
| hn |  |  | vessel | Yes | 13.50 | 2249 |
| hn |  |  | vessel, size | Yes | 17.39 | 2318 |
| hn |  |  | Yese | 17.44 | 2366 |  |
| hn |  |  | beaufort, size | Yes | 17.80 | 2268 |
| hn |  |  |  | Yes | 19.36 | 2366 |
| hn |  |  |  | Yes | 19.37 | 2266 |
| hn | herm | 4 |  | No |  |  |


| hr | beaufort | No |
| :--- | :--- | :--- |
| hr | size | No |
| hn | beaufort, vessel | No |
| hr | beaufort, vessel | No |
| hr | beaufort, size | No |
| hr | vessel, size | No |
| hn | beaufort, vessel, size | No |
| hr | beaufort, vessel, size | No |

Table 9: Candidate detection functions for Low Platforms. The first one listed was selected for the density model.


Figure 12: Detection function for Low Platforms that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 138
Distance range : 0 - 5500
AIC : 2251.335
Detection function:
    Hazard-rate key function
Detection function parameters
Scale Coefficients:
    estimate se
```

Shape parameters:
estimate se
(Intercept) 0.4806950 .1553973

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2751198 | 0.03724143 | 0.1353644 |
| $N$ in covered region | 501.5996387 | 77.01845894 | 0.1535457 |

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.



Figure 13: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.

Group Size Frequency, without right trunc.


Group Size Frequency, right trunc. at 5500 m


Group Size vs. Distance, without right trunc.


Group Size vs. Distance, right trunc. at 5500 m


Figure 14: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## Naked Eye Surveys

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 7 |
| Balaenoptera acutorostrata | Minke whale | 177 |


| Balaenoptera borealis | Sei whale | 68 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 4 |
| Balaenoptera edeni | Bryde's whale | 1 |
| Balaenoptera musculus | Blue whale | 5 |
| Balaenoptera physalus | Fin whale | 261 |
| Eubalaena glacialis | North Atlantic right whale | 10 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 38 |
| Orcinus orca | Killer whale | 4 |
| Total |  | 575 |

Table 10: Proxy species used to fit detection functions for Naked Eye Surveys. The number of sightings, n, is before truncation.

The sightings were right truncated at 2500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| size | Estimated size (number of individuals) of the sighted group. |

Table 11: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn | $\cos$ | 2 |  | Yes | 0.00 | 784 |
| hr | poly | 2 |  | Yes | 3.99 | 792 |
| hr | poly | 4 |  | Yes | 4.13 | 807 |
| hr |  |  |  | Yes | 5.69 | 836 |
| hr |  |  | size | Yes | 6.29 | 876 |
| hn | $\cos$ | 3 |  | Yes | 12.98 | 768 |
| hn |  |  | size | Yes | 22.94 | 953 |
| hn |  |  | beaufort, size | Yes | 24.90 | 953 |
| hn |  |  |  | Yes | 29.69 | 948 |
| hn |  |  | beaufort | Yes | 31.41 | 948 |
| hn | herm | 4 |  | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hr |  |  | beaufort, size | No |  |  |

Table 12: Candidate detection functions for Naked Eye Surveys. The first one listed was selected for the density model.

Killer whale and proxy species


Figure 15: Detection function for Naked Eye Surveys that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 547
Distance range : 0 - 2500
AIC : 8011.685
Detection function:
    Half-normal key function with cosine adjustment term of order 2
Detection function parameters
Scale Coefficients:
\begin{tabular}{lrr} 
& estimate & se \\
(Intercept) & 6.75079 & 0.03895579
\end{tabular}
Adjustment term parameter(s):
    estimate se
cos, order 2 0.4171605 0.06990221
```

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.3135628 | 0.01172703 | 0.0373993 |
| N in covered region | 1744.4669776 | 89.86325917 | 0.0515133 |
|  |  |  |  |
|  |  |  |  |
| Monotonicity constraints were enforced. |  |  |  |

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.


Figure 16: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.

Group Size Frequency, without right trunc.


Group Size Frequency, right trunc. at $\mathbf{2 5 0 0} \mathbf{m}$


Group Size vs. Distance, without right trunc.


Group Size vs. Distance, right trunc. at 2500 m


Figure 17: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## NEFSC Abel-J Naked Eye Surveys

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 0 |
| Balaenoptera acutorostrata | Minke whale | 100 |


| Balaenoptera borealis | Sei whale | 2 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 57 |
| Eubalaena glacialis | North Atlantic right whale | 10 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 37 |
| Orcinus orca | Killer whale | 2 |
| Total |  | 208 |

Table 13: Proxy species used to fit detection functions for NEFSC Abel-J Naked Eye Surveys. The number of sightings, $n$, is before truncation.

The sightings were right truncated at 2500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). |
| size | Estimated size (number of individuals) of the sighted group. |

Table 14: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn | cos | 2 |  | Yes | 0.00 | 710 |
| hr |  |  |  | Yes | 0.82 | 751 |
| hr | poly | 4 |  | Yes | 0.82 | 730 |
| hr | poly | 2 |  | Yes | 1.11 | 716 |
| hn | cos | 3 |  | Yes | 2.60 | 661 |
| hn |  |  | size | Yes | 8.50 | 859 |
| hn |  |  | quality, size | Yes | 10.21 | 858 |
| hn |  |  |  | Yes | 11.08 | 841 |
| hn |  |  | quality | Yes | 12.98 | 841 |
| hn | herm | 4 |  | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hr |  |  | quality | No |  |  |
| hr |  |  | size | No |  |  |


| $h n$ | beaufort, quality | No |
| :--- | :--- | :--- |
| hr | beaufort, quality | No |
| hn | beaufort, size | No |
| hr | beaufort, size | No |
| $h r$ | quality, size | No |
| $h n$ | beaufort, quality, size | No |
| $h r$ | beaufort, quality, size | No |

Table 15: Candidate detection functions for NEFSC Abel-J Naked Eye Surveys. The first one listed was selected for the density model.


Figure 18: Detection function for NEFSC Abel-J Naked Eye Surveys that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 206
Distance range : 0 - 2500
AIC : 2970.995
Detection function:
    Half-normal key function with cosine adjustment term of order 2
Detection function parameters
Scale Coefficients:
```



Adjustment term parameter(s):
estimate se
cos, order 20.47384540 .1225081

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2840856 | 0.01516015 | 0.05336471 |
| $N$ in covered region | 725.1334366 | 57.66112492 | 0.07951795 |

Monotonicity constraints were enforced.

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.

beaufort vs. Distance, right trunc. at $\mathbf{2 5 0 0} \mathbf{~ m}$


Figure 19: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.

quality vs. Distance, right trunc. at $\mathbf{2 5 0 0} \mathbf{~ m}$


Figure 20: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.


Figure 21: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## CODA and SCANS II

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 0 |
| Balaenoptera acutorostrata | Minke whale | 76 |


| Balaenoptera borealis | Sei whale | 12 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 4 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 1 |
| Balaenoptera physalus | Fin whale | 192 |
| Eubalaena glacialis | North Atlantic right whale | 0 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 0 |
| Orcinus orca | Killer whale | 1 |
| Total |  | 286 |

Table 16: Proxy species used to fit detection functions for CODA and SCANS II. The number of sightings, n, is before truncation.

The sightings were right truncated at 2500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). |
| size | Estimated size (number of individuals) of the sighted group. |

Table 17: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta$ AIC | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn | $\cos$ | 2 |  | Yes | 0.00 | 793 |
| hn | $\cos$ | 3 |  | Yes | 4.32 | 810 |
| hn |  |  |  | Yes | 4.49 | 899 |
| hr | poly | 2 |  | Yes | 4.88 | 825 |
| hn |  |  | size | Yes | 5.01 | 899 |
| hr |  |  |  | Yes | 5.35 | 924 |
| hr | poly | 4 |  | Yes | 5.95 | 862 |
| hn | herm | 4 |  | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hn |  |  | quality | No |  |  |
| hr |  |  | quality | No |  |  |
| hr |  |  | size | No |  |  |
| hn |  |  | beaufort, quality | No |  |  |


| hr | beaufort, quality | No |
| :--- | :--- | :--- |
| hn | beaufort, size | No |
| hr | beaufort, size | No |
| hn | quality, size | No |
| hr | quality, size | No |
| hn | beaufort, quality, size | No |
| hr | beaufort, quality, size | No |

Table 18: Candidate detection functions for CODA and SCANS II. The first one listed was selected for the density model.


Figure 22: Detection function for CODA and SCANS II that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 266
Distance range : 0 - 2500
AIC : 3880.079
Detection function:
    Half-normal key function with cosine adjustment term of order 2
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 6.669385 0.05438951
```

```
Adjustment term parameter(s):
    estimate se
cos, order 2 0.294739 0.1071401
```

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.3171721 | 0.01840233 | 0.05802001 |
| $N$ in covered region | 838.6613057 | 64.60057080 | 0.07702820 |

Monotonicity constraints were enforced.

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.


Figure 23: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.
quality vs. Distance, right trunc. at $\mathbf{2 5 0 0} \mathbf{m}$



Figure 24: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.


Figure 25: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## Aerial Surveys



Figure 26: Detection hierarchy for aerial surveys

## With Belly Observers

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 2 |
| Balaenoptera acutorostrata | Minke whale | 97 |
| Balaenoptera borealis | Sei whale | 14 |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |


| Balaenoptera edeni | Bryde's whale | 2 |
| :--- | :--- | ---: |
| Balaenoptera musculus | Blue whale | 1 |
| Balaenoptera physalus | Fin whale | 235 |
| Eubalaena glacialis | North Atlantic right whale | 43 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 198 |
| Orcinus orca | Killer whale | 0 |
| Total |  | 592 |

Table 19: Proxy species used to fit detection functions for With Belly Observers. The number of sightings, n, is before truncation.

The sightings were right truncated at 2000 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| size | Estimated size (number of individuals) of the sighted group. |

Table 20: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta$ AIC | Mean ESHW (m) |
| :--- | :---: | :---: | :---: | :---: | :---: | ---: |
| hn | cos | 2 |  | Yes | 0.00 | 594 |
| hr | poly | 2 |  | Yes | 1.71 | 598 |
| hr | poly | 4 |  | Yes | 1.86 | 609 |
| hr |  |  | size | Yes | 6.10 | 632 |
| hr |  |  |  | Yes | 7.37 | 627 |
| hn | cos | 3 |  | Yes | 11.15 | 585 |
| hn |  |  | size | Yes | 22.91 | 705 |
| hn |  |  |  | Yes | 23.39 | 703 |
| hn | herm | 4 | beaufort | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort, size | No |  |  |
| hn |  |  | beaufort, size | No |  |  |
| hr |  |  |  |  |  |  |

Table 21: Candidate detection functions for With Belly Observers. The first one listed was selected for the density model.

Killer whale and proxy species


Figure 27: Detection function for With Belly Observers that was selected for the density model

Statistical output for this detection function:

Summary for ds object
Number of observations : 495
Distance range : 0-2000
AIC : 6960.823

Detection function:
Half-normal key function with cosine adjustment term of order 2

Detection function parameters
Scale Coefficients:
estimate se
(Intercept) 6.4648170 .04316341
Adjustment term parameter(s):
estimate se
cos, order 20.42866510 .0797525

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2967565 | 0.01131844 | 0.03814048 |
| N in covered region | 1668.0343266 | 89.44444872 | 0.05362267 |
|  |  |  |  |
|  |  |  |  |
| Monotonicity constraints were enforced. |  |  |  |

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.



Figure 28: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.

Group Size Frequency, without right trunc.


Group Size Frequency, right trunc. at 2000 m


Group Size vs. Distance, without right trunc.


Group Size vs. Distance, right trunc. at 2000 m


Figure 29: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## Without Belly Observers - 600 ft

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | :---: |
| Balaenoptera | Balaenopterid sp. | 2 |
| Balaenoptera acutorostrata | Minke whale | 8 |


| Balaenoptera borealis | Sei whale | 0 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 15 |
| Eubalaena glacialis | North Atlantic right whale | 2 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 16 |
| Orcinus orca | Killer whale | 2 |
| Physeter macrocephalus | Sperm whale | 10 |
| Total |  | 55 |

Table 22: Proxy species used to fit detection functions for Without Belly Observers - 600 ft . The number of sightings, $n$, is before truncation.

The sightings were right truncated at 600 m . Due to a reduced frequency of sightings close to the trackline that plausibly resulted from the behavior of the observers and/or the configuration of the survey platform, the sightings were left truncted as well. Sightings closer than 32 m to the trackline were omitted from the analysis, and it was assumed that the the area closer to the trackline than this was not surveyed. This distance was estimated by inspecting histograms of perpendicular sighting distances.

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| size | Estimated size (number of individuals) of the sighted group. |

Table 23: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn |  |  |  | Yes | 0.00 | 285 |
| hr |  |  |  | Yes | 0.95 | 304 |
| hr |  |  | beaufort | Yes | 0.97 | 315 |
| hn |  |  | beaufort | Yes | 1.09 | 285 |
| hn | $\cos$ | 3 |  | Yes | 1.58 | 304 |
| hn | herm | 4 |  | Yes | 1.93 | 284 |
| hn | cos | 2 |  | Yes | 1.94 | 270 |
| hr | poly | 4 |  | Yes | 2.95 | 304 |
| hr | poly | 2 |  | Yes | 2.95 | 304 |
| hn |  |  | size | No |  |  |
| hr |  |  | size | No |  |  |
| hn |  |  | beaufort, size | No |  |  |
| hr |  |  | beaufort, size | No |  |  |

Table 24: Candidate detection functions for Without Belly Observers - 600 ft . The first one listed was selected for the density model.


Figure 30: Detection function for Without Belly Observers - 600 ft that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 48
Distance range : 32.24668 - 600
AIC : 185.0831
Detection function:
    Half-normal key function
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 5.553853 0.1259755
\begin{tabular}{lrrr} 
& Estimate & SE & CV \\
Average p & 0.4749316 & 0.05807637 & 0.1222837 \\
\(N\) in covered region & 101.0671778 & 16.26277838 & 0.1609106
\end{tabular}
```

Additional diagnostic plots:

## Left trucated sightings (in black)



Figure 31: Density of sightings by perpendicular distance for Without Belly Observers - 600 ft . Black bars on the left show sightings that were left truncated.
beaufort vs. Distance, without right trunc.



Figure 32: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.

Group Size Frequency, without right trunc.


Group Size Frequency, right trunc. at $\mathbf{6 0 0} \mathbf{m}$


Group Size vs. Distance, without right trunc.


Group Size vs. Distance, right trunc. at $\mathbf{6 0 0} \mathbf{~ m}$


Figure 33: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## Without Belly Observers - 750 ft

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | :--- |
| Balaenoptera | Balaenopterid sp. | 1 |
| Balaenoptera acutorostrata | Minke whale | 0 |


| Balaenoptera borealis | Sei whale | 0 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 2 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 3 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 2 |
| Eubalaena glacialis | North Atlantic right whale | 0 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 6 |
| Orcinus orca | Killer whale | 0 |
| Physeter macrocephalus | Sperm whale | 37 |
| Total |  | 51 |

Table 25: Proxy species used to fit detection functions for Without Belly Observers - 750 ft . The number of sightings, $n$, is before truncation.

The sightings were right truncated at 600 m . Due to a reduced frequency of sightings close to the trackline that plausibly resulted from the behavior of the observers and/or the configuration of the survey platform, the sightings were left truncted as well. Sightings closer than 40 m to the trackline were omitted from the analysis, and it was assumed that the the area closer to the trackline than this was not surveyed. This distance was estimated by inspecting histograms of perpendicular sighting distances. The vertical sighting angles were heaped at 10 degree increments, so the candidate detection functions were fitted using linear bins scaled accordingly.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta$ AIC | Mean ESHW (m) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| hn | cos | 2 |  | Yes | 0.00 | 216 |
| hr |  |  | Yes | 0.59 | 251 |  |
| hn | cos | 3 |  | Yes | 2.31 | 255 |
| hn | herm | 4 | Yes | 2.46 | 316 |  |
| hr | poly | 2 | Yes | 2.59 | 251 |  |
| hr | poly | 4 | Yes | 2.60 | 259 |  |
| hn |  |  | No |  |  |  |

Table 26: Candidate detection functions for Without Belly Observers - 750 ft . The first one listed was selected for the density model.

## Killer whale and proxy species



Figure 34: Detection function for Without Belly Observers - 750 ft that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 34
Distance range : 40.30835 - 600
AIC : 124.984
Detection function:
    Half-normal key function with cosine adjustment term of order 2
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 5.738324 0.1838281
Adjustment term parameter(s):
    estimate se
cos, order 2 0.4333816 0.242253
```

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.3592782 | 0.0870934 | 0.2424122 |
| $N$ in covered region | 94.6341959 | 26.3634677 | 0.2785829 |

Monotonicity constraints were enforced.

Additional diagnostic plots:

## Left trucated sightings (in black)



Figure 35: Density of sightings by perpendicular distance for Without Belly Observers - 750 ft . Black bars on the left show sightings that were left truncated.

## Without Belly Observers - 1000 ft

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 1 |
| Balaenoptera acutorostrata | Minke whale | 16 |
| Balaenoptera borealis | Sei whale | 0 |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 32 |
| Eubalaena glacialis | North Atlantic right whale | 34 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 30 |
| Orcinus orca | Killer whale | 0 |
| Total |  | 113 |

Table 27: Proxy species used to fit detection functions for Without Belly Observers - 1000 ft . The number of sightings, n, is before truncation.

The sightings were right truncated at 1500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). <br> size |
| Estimated size (number of individuals) of the sighted group. |  |

Table 28: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hr |  |  |  | Yes | 0.00 | 434 |
| hr | poly | 4 |  | Yes | 1.58 | 424 |
| hn | $\cos$ | 2 |  | Yes | 1.71 | 462 |
| hr | poly | 2 |  | Yes | 1.92 | 427 |
| hr |  |  | quality | Yes | 1.96 | 433 |
| hn | $\cos$ | 3 |  | Yes | 3.64 | 418 |
| hn |  |  |  | Yes | 11.03 | 585 |
| hn | herm | 4 |  | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hn |  |  | quality | No |  |  |
| hn |  |  | size | No |  |  |
| hr |  |  | size | No |  |  |
| hn |  |  | beaufort, quality | No |  |  |
| hr |  |  | beaufort, quality | No |  |  |
| hn |  |  | beaufort, size | No |  |  |
| hr |  |  | beaufort, size | No |  |  |
| hn |  |  | quality, size | No |  |  |
| hr |  |  | quality, size | No |  |  |
| hn |  |  | beaufort, quality, size | No |  |  |
| hr |  |  | beaufort, quality, size | No |  |  |

Table 29: Candidate detection functions for Without Belly Observers - 1000 ft . The first one listed was selected for the density model.

Killer whale and proxy species
Hazard rate key with no adjustments 105 sightings, right truncated at 1500 m



Figure 36: Detection function for Without Belly Observers - 1000 ft that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : }10
Distance range : 0 - 1500
AIC : 1432.491
Detection function:
    Hazard-rate key function
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 5.576432 0.2232183
```

Shape parameters:
estimate se
(Intercept) 0.63740870 .1752092
Estimate SE CV
Average p 0.28912950 .039844930 .1378100
N in covered region 363.159117558 .288782850 .1605048

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.
beaufort vs. Distance, right trunc. at 1500 m


Figure 37: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.
quality vs. Distance, right trunc. at 1500 m


Figure 38: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.

Group Size Frequency, without right trunc.
Group Size vs. Distance, without right trunc.


Group Size Frequency, right trunc. at 1500 m



Group Size vs. Distance, right trunc. at 1500 m


Figure 39: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## UNCW Aerial Surveys

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 1 |
| Balaenoptera acutorostrata | Minke whale | 15 |


| Balaenoptera borealis | Sei whale | 0 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 19 |
| Eubalaena glacialis | North Atlantic right whale | 31 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 23 |
| Orcinus orca | Killer whale | 0 |
| Total |  | 89 |

Table 30: Proxy species used to fit detection functions for UNCW Aerial Surveys. The number of sightings, n , is before truncation.

The sightings were right truncated at 1500 m .

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). |
| size | Estimated size (number of individuals) of the sighted group. |

Table 31: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn | $\cos$ | 3 |  | Yes | 0.00 | 358 |
| hr |  |  |  | Yes | 0.01 | 397 |
| hr | poly | 4 |  | Yes | 0.85 | 391 |
| hr | poly | 2 |  | Yes | 1.03 | 386 |
| hn | $\cos$ | 2 |  | Yes | 1.24 | 409 |
| hr |  |  | quality | Yes | 1.55 | 396 |
| hn |  |  |  | Yes | 5.53 | 480 |
| hn |  |  | quality | Yes | 7.53 | 480 |
| hn | herm | 4 |  | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hn |  |  | size | No |  |  |
| hr |  |  | size | No |  |  |
| hn |  |  | beaufort, quality | No |  |  |


| hr | beaufort, quality | No |
| :--- | :--- | :--- |
| hn | beaufort, size | No |
| hr | beaufort, size | No |
| hn | quality, size | No |
| hr | quality, size | No |
| hn | beaufort, quality, size | No |
| hr | beaufort, quality, size | No |

Table 32: Candidate detection functions for UNCW Aerial Surveys. The first one listed was selected for the density model.


Figure 40: Detection function for UNCW Aerial Surveys that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 86
Distance range : 0 - 1500
AIC : 1144.166
Detection function:
    Half-normal key function with cosine adjustment term of order 3
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 6.006457 0.06897785
```

```
Adjustment term parameter(s):
    estimate se
cos, order 3 0.4451317 0.1512901
```

Monotonicity constraints were enforced.

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2387636 | 0.02505434 | 0.1049337 |
| $N$ in covered region | 360.1889349 | 50.76321130 | 0.1409350 |

Monotonicity constraints were enforced.

Additional diagnostic plots:
beaufort vs. Distance, without right trunc.

beaufort vs. Distance, right trunc. at 1500 m


Figure 41: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.

quality vs. Distance, right trunc. at 1500 m


Figure 42: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.

Group Size Frequency, without right trunc.
Group Size vs. Distance, without right trunc.


Group Size Frequency, right trunc. at 1500 m


Group Size vs. Distance, right trunc. at 1500 m



Figure 43: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## NARWSS Grummans

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 0 |
| Balaenoptera acutorostrata | Minke whale | 88 |


| Balaenoptera borealis | Sei whale | 101 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 0 |
| Balaenoptera physalus | Fin whale | 149 |
| Eubalaena glacialis | North Atlantic right whale | 113 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 153 |
| Orcinus orca | Killer whale | 0 |
| Total |  | 604 |

Table 33: Proxy species used to fit detection functions for NARWSS Grummans. The number of sightings, n, is before truncation.

The sightings were right truncated at 3000 m . Due to a reduced frequency of sightings close to the trackline that plausibly resulted from the behavior of the observers and/or the configuration of the survey platform, the sightings were left truncted as well. Sightings closer than 107 m to the trackline were omitted from the analysis, and it was assumed that the the area closer to the trackline than this was not surveyed. This distance was estimated by inspecting histograms of perpendicular sighting distances.

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). |
| size | Estimated size (number of individuals) of the sighted group. |

Table 34: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hr |  |  | quality, size | Yes | 0.00 | 676 |
| hr |  |  | size | Yes | 0.23 | 664 |
| hr | poly | 2 |  | Yes | 1.31 | 499 |
| hr | poly | 4 |  | Yes | 1.46 | 528 |
| hr |  |  | beaufort, size | Yes | 2.18 | 663 |
| hr |  |  | quality | Yes | 5.01 | 612 |
| hr |  |  |  | Yes | 5.18 | 607 |
| hr |  |  | beaufort | Yes | 7.18 | 607 |
| hn | cos | 2 |  | Yes | 22.92 | 797 |
| hn | cos | 3 |  | Yes | 44.94 | 730 |
| hn |  |  | size | Yes | 76.90 | 1049 |


| hn |  |  | quality, size | Yes | 78.25 | 1049 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hn |  |  |  | Yes | 83.16 | 1045 |
| hn |  |  | quality | Yes | 84.79 | 1044 |
| hn | herm | 4 |  | No |  |  |
| hn |  |  | beaufort | No |  |  |
| hn |  |  | beaufort, quality | No |  |  |
| hr |  |  | beaufort, quality | No |  |  |
| hn |  |  | beaufort, size | No |  |  |
| hn |  |  | beaufort, quality, size | No |  |  |
| hr |  |  | beaufort, quality, size | No |  |  |

Table 35: Candidate detection functions for NARWSS Grummans. The first one listed was selected for the density model.


Figure 44: Detection function for NARWSS Grummans that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 539
Distance range : 106.5979 - 3000
AIC : 7998.478
Detection function:
    Hazard-rate key function
```

```
Detection function parameters
Scale Coefficients:
    estimate se
(Intercept) 5.9530450 0.18080430
quality -0.1635689 0.09769324
size 0.1950236 0.06116755
```

Shape parameters:

```
    estimate se
```

(Intercept) 0.57360250 .07152729

|  | Estimate | SE | CV |
| :--- | ---: | ---: | ---: |
| Average p | 0.2088055 | 0.01869493 | 0.08953274 |
| N in covered region | 2581.3500409 | 251.79075785 | 0.09754228 |

Additional diagnostic plots:

## Left trucated sightings (in black)



Figure 45: Density of sightings by perpendicular distance for NARWSS Grummans. Black bars on the left show sightings that were left truncated.
beaufort vs. Distance, without right trunc.


Distance (m)


Figure 46: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.
quality vs. Distance, right trunc. at $\mathbf{3 0 0 0} \mathbf{~ m}$


Figure 47: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.


Figure 48: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

## NARWSS Twin Otters

Because this taxon was sighted too infrequently to fit a detection function to its sightings alone, we fit a detection function to the pooled sightings of several other species that we believed would exhibit similar detectability. These "proxy species" are listed below.

| Reported By Observer | Common Name | n |
| :--- | :--- | ---: |
| Balaenoptera | Balaenopterid sp. | 0 |
| Balaenoptera acutorostrata | Minke whale | 731 |


| Balaenoptera borealis | Sei whale | 696 |
| :--- | :--- | ---: |
| Balaenoptera borealis/edeni | Sei or Bryde's whale | 0 |
| Balaenoptera borealis/physalus | Fin or Sei whale | 0 |
| Balaenoptera edeni | Bryde's whale | 0 |
| Balaenoptera musculus | Blue whale | 7 |
| Balaenoptera physalus | Fin whale | 1545 |
| Eubalaena glacialis | North Atlantic right whale | 1430 |
| Eubalaena glacialis/Megaptera novaeangliae | Right or humpback whale | 0 |
| Megaptera novaeangliae | Humpback whale | 2308 |
| Orcinus orca | Killer whale | 2 |
| Total |  | 6719 |

Table 36: Proxy species used to fit detection functions for NARWSS Twin Otters. The number of sightings, n , is before truncation.

The sightings were right truncated at 5000 m . Due to a reduced frequency of sightings close to the trackline that plausibly resulted from the behavior of the observers and/or the configuration of the survey platform, the sightings were left truncted as well. Sightings closer than 107 m to the trackline were omitted from the analysis, and it was assumed that the the area closer to the trackline than this was not surveyed. This distance was estimated by inspecting histograms of perpendicular sighting distances. The vertical sighting angles were heaped at 10 degree increments up to 80 degrees and 1 degree increments thereafter, so the candidate detection functions were fitted using linear bins scaled accordingly.

| Covariate | Description |
| :--- | :--- |
| beaufort | Beaufort sea state. |
| quality | Survey-specific index of the quality of observation conditions, utilizing relevant <br> factors other than Beaufort sea state (see methods). |
| size | Estimated size (number of individuals) of the sighted group. |

Table 37: Covariates tested in candidate "multi-covariate distance sampling" (MCDS) detection functions.

| Key | Adjustment | Order | Covariates | Succeeded | $\Delta \mathrm{AIC}$ | Mean ESHW (m) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hr |  |  | size | Yes | 0.00 | 1632 |
| hr | poly | 4 |  | Yes | 43.86 | 1396 |
| hr | poly | 2 |  | Yes | 55.53 | 1456 |
| hr |  |  |  | Yes | 125.46 | 1494 |
| hn | $\cos$ | 3 |  | Yes | 202.85 | 1778 |
| hn | $\cos$ | 2 |  | Yes | 212.87 | 1938 |
| hn | herm | 4 |  | Yes | 411.14 | 2330 |
| hn |  |  |  | Yes | 417.26 | 2338 |
| hn |  |  | beaufort | No |  |  |
| hr |  |  | beaufort | No |  |  |
| hn |  |  | quality | No |  |  |


| hr | quality | No |
| :--- | :--- | :--- |
| hn | size | No |
| hn | beaufort, quality | No |
| hr | beaufort, quality | No |
| hn | beaufort, size | No |
| hr | beaufort, size | No |
| hn | quality, size | No |
| hr | quality, size | No |
| hn | beaufort, quality, size | No |
| hr | beaufort, quality, size | No |

Table 38: Candidate detection functions for NARWSS Twin Otters. The first one listed was selected for the density model.


Figure 49: Detection function for NARWSS Twin Otters that was selected for the density model

Statistical output for this detection function:

```
Summary for ds object
Number of observations : 6141
Distance range : 106.5979 - 5000
AIC : 30341.61
Detection function:
    Hazard-rate key function
```

Detection function parameters
Scale Coefficients:
estimate se
(Intercept) 6.02629220 .09543969
size 0.63069690 .06345544

Shape parameters:
estimate se
(Intercept) 0.25793450 .03040472
Estimate SE CV
Average p $3.012936 \mathrm{e}-01 \quad 9.423404 \mathrm{e}-030.03127648$
$N$ in covered region $2.038211 \mathrm{e}+046.747926 \mathrm{e}+020.03310710$

Additional diagnostic plots:

Left trucated sightings (in black)


Figure 50: Density of sightings by perpendicular distance for NARWSS Twin Otters. Black bars on the left show sightings that were left truncated.
beaufort vs. Distance, without right trunc.


Figure 51: Scatterplots showing the relationship between Beaufort sea state and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). The line is a simple linear regression.
quality vs. Distance, without right trunc.


Figure 52: Scatterplots showing the relationship between the survey-specific index of the quality of observation conditions and perpendicular sighting distance, for all sightings (left) and only those not right truncated (right). Low values of the quality index correspond to better observation conditions. The line is a simple linear regression.


Figure 53: Histograms showing group size frequency and scatterplots showing the relationship between group size and perpendicular sighting distance, for all sightings (top row) and only those not right truncated (bottom row). In the scatterplot, the line is a simple linear regression.

| Platform | Surveys | Group <br> Size | $g(0)$ | Biases Addressed | Source |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Shipboard | All | Any | 0.921 | Perception | Barlow and Forney (2007) |
| Aerial | All | Any | 0.78 | Availability | Hooker et al. (2012) |

Table 39: Estimates of $g(0)$ used in this density model.

No species- or survey-specific estimates of $g(0)$ were available for killer whales for any surveys in our study. For shipboard surveys, we used Barlow and Forney's (2007) estimate ( 0.921 ) for large whales (including killer whales) produced from several years of dual-team surveys in the Pacific ocean that used similar binoculars and protocols to the binocular surveys in our study. We also applied this estimate to the naked eye surveys in our study, as we found no estimate of $g(0)$ in the literature for killer whales observed by naked eye from shipboard surveys.

This estimate accounted for perception bias but not availability bias, but we do not believe availability to be a major factor affecting detectability of killer whales from shipboard surveys, as they are not a particularly long-diving species. For long diving cetaceans such as sperm whales, Kogia spp., and beaked whales, Barlow and Forney (2007) used Barlow's (1999) model of $g(0)$ that incorporated dive behavior. Barlow parameterized that model such that the median duration of long dives ranged from 10.9-28.6 min, depending on the species, based on prior observational studies. By comparison, Baird et al. (2005) reported that mean dive durations for 41 fish-eating killer whales for dives $>=1 \mathrm{~min}$ in duration was 2.3-2.4 min. Miller et al. (2010) studied the diving behavior of 12 mammal-eating killer whales, which exhibited longer dives. The authors did not report dive duration statistics but noted that the whales spent $50 \%$ of their time 8 m or shallower and $90 \%$ of their time 40 m or shallower. Hooker et al. (2012) reported that unspecified killer whales spent $78 \%$ of their time between $0-10 \mathrm{~m}$. Finally, Sivle et al. (2012) characterized killer whales as a "shallow-diving" odontocete; by contrast, they characterized pilot whales as "intermediate diving" and sperm whales as "deep diving" odontocetes.

We did not find a species-specific $g(0)$ estimate for killer whales observed by aircraft in the literature. Palka (2006) estimated of $g(0)$ for groups of 1-5 large whales from from two years of aerial surveys using the Hiby (1999) circle- back method. This estimate accounted for both availability and perception bias, but pooled sightings of several species together to provide a generic estimate for all large whales, due to sample-size limitations. Most of these species undertake longer dives than killer whales; we believe Palka's $g(0)$ was dominated by availability bias of such species and thus underestimates killer whale detectability. Instead, we used Hooker et al.'s (2012) report that an unspecified number and type of killer whales spent $78 \%$ of time between $0-10 \mathrm{~m}$ and set $\mathrm{g}(0)=0.78$.
We note that percent time spent at $0-10 \mathrm{~m}$ does not necessarily equate to "percent time detectable by aerial observation". Hooker et al.'s data appear to be those reported by Kvadsheim et al. (2012). The four killer whales monitored in that study performed roughly 20 x more dives to $1-30 \mathrm{~m}$ than to $30-200 \mathrm{~m}$; the mean depth of the $1-30 \mathrm{~m}$ dives was only $2.6-3.6 \mathrm{~m}$.

## Density Model

Killer whales are widely distributed throughout the world's oceans and are found in tropical, temperate, and high-latitude waters, in both pelagic and coastal habitats (Forney and Wade 2006). They are considered rare in the Gulf of Mexico, U.S. Atlantic waters, and the Bay of Fundy, uncommon but seasonally regular in Labrador and Newfoundland, and common in the Canadian Arctic (Forney and Wade 2006). A recent comprehensive analysis of available systematic and opportunistic sightings in the northwest Atlantic between 40-60 N, 40-75 W concurred with this view (Lawson and Stevens 2014). These authors reported that almost all of the sightings in this region occurred at depths less than 200 m , but that this might reflect a bias in the distribution of observation effort, and that killer whales have been reported in mid-Atlantic waters at depths exceeding 3000 m (Lawson and Stevens 2014). For the latitudes $25-45$ N, the Ocean Biogeographic Information System Spatial Ecological Analysis of Megavertebrate Populations (OBIS-SEAMAP) database reported sightings at depths ranging from less than 10 m to more than 5000 m ; sightings were concentrated in the northern half of the region but were not absent from the southern half (http://seamap.env.duke.edu/species/180469, accessed January 30, 2015). Lawson and Stevens (2014) also reported that killer whales were sighted in their study area during all months of the year.

The surveys in our database reported only four killer whale sightings within our east coast study area. With so few sightings, we could not attempt to model abundance from environmental predictors. The wide distribution of sightings of killer whales, both globally and within our study area, suggested that our entire east coast study area is killer whale habitat, so we included the entire area in our stratified model.


Figure 54: Killer whale density model schematic. All sightings are shown, including those that were truncated when detection functions were fitted. The coefficient of variation (CV) underestimates the true uncertainty of our estimate, as it only incorporated the uncertainty of the GAM stage of our model. Other sources of uncertainty include the detection functions and $g(0)$ estimates. It was not possible to incorporate these into our CV without undertaking a computationally-prohibitive bootstrap; we hope to attempt that in a future version of our model.

## Abundance Estimates

| Dates | Model or study | Estimated <br> abundance | CV | Assumed <br> $\mathrm{g}(0)=1$ | In our <br> models |
| :--- | :--- | ---: | :--- | :--- | :--- |
| $1992-2014$ | Our model | 11 | 0.82 | No |  |
| $1972-2012 ?$ | Minimum estimate for 40-60 N, 40-75 W from <br> photo ID (Lawson and Stevens 2014) | 67 |  |  |  |
|  |  |  |  |  |  |

Table 40: Estimated mean abundance within the study area for our model and independent estimates from NOAA and/or the scientific literature. The Dates column gives the dates to which the estimates apply. For our model, these are the years for survey data were available. Our coefficient of variation (CV) estimates are probably too low, as they only incorporated the uncertainty of the GAM stage of our models. Other sources of uncertainty include the detection functions and $\mathrm{g}(0)$ estimates. It was not possible to incorporate these into our CVs without undertaking a computationally-prohibitive bootstrap; we hope to attempt that in a future version of our models. The Assumed $\mathrm{g}(0)=1$ column specifies whether the abundance estimate assumed that detection was certain along the survey trackline. Studies that assumed this did not correct for availability or perception bias, and therefore underestimated abundance. The In our models column specifies whether the survey data from the study was also used in our models. If not, the study provides a completely independent estimate of abundance. Note that our abundance estimates are averaged over the whole year, while the other estimates apply to specific months or seasons. Please see the Discussion section below for our evaluation of our models compared to the other estimates.

## Discussion

At the time of this analysis, the most recent NOAA stock assessment report for the Western North Atlantic Stock of killer whales was from 2000 and it did not offer an abundance estimate. Lawson and Stevens (2014) reported a minimum number of 67 killer whales for the region $40-60 \mathrm{~N}, 40-75 \mathrm{~W}$ based on photographic identification of individuals, but that this is is an underestimate of the true population. Of the 1700 photographs available, over $70 \%$ were not of sufficient quality to make an identification. They did not offer an estimate of the upper bound for the population but concluded that the northwestern Atlantic population is not as large as the northeastern Atlantic population, which may be close to 10,000 whales (Lawson and Stevens 2014).

In light of the uncertainty surrounding the population size but the general agreement that killer whales are rare within our study area, we believe our abundance estimate is not unreasonable.

## References

Baird RW, Hanson MB, Dill LM (2005) Factors influencing the diving behaviour of fish-eating killer whales: sex differences and diel and interannual variation in diving rates. Can J Zool. 83: 257-267.
Barlow J (1999) Trackline detection probability for long diving whales. In: Marine Mammal Survey and Assessment Methods (Garner GW, Amstrup SC, Laake JL, Manly BFJ, McDonald LL, Robertson DG, eds.). Balkema, Rotterdam, pp. 209-221.
Barlow J, Forney KA (2007) Abundance and density of cetaceans in the California Current ecosystem. Fish. Bull. 105: 509-526.

Forney KA, Wade PR (2007) Worldwide Distribution and Abundance of Killer Whales. In: Whales, whaling and ocean ecosystems (Estes JA, DeMaster DP, Doak DF, Williams TM, Brownell RL, eds). University of California Press, Berkeley, California. pp. 145-162.

Hiby L (1999) The objective identification of duplicate sightings in aerial survey for porpoise. In: Marine Mammal Survey and Assessment Methods (Garner GW, Amstrup SC, Laake JL, Manly BFJ, McDonald LL, Robertson DG, eds.). Balkema, Rotterdam, pp. 179-189.
Hooker SK, Fahlman A, Moore MJ, Soto NA de, Quiros YB de, Brubakk AO, et al. (2012) Deadly diving? Physiological and behavioural management of decompression stress in diving mammals. Proc R Soc B 279: 1041-1050.

Kvadsheim P, Miller PJO, Tyack PL, Sivle LD, Lam FPA, Fahlman A (2012) Estimated tissue and blood N2 levels and risk of decompression sickness in deep-, intermediate-, and shallow-diving toothed whales during exposure to naval sonar. Frontiers in Physiology 3.

Lawson JW, Stevens TS (2014) Historic and current distribution patterns, and minimum abundance of killer whales (Orcinus orca) in the north-west Atlantic. Journal of the Marine Biological Association of the United Kingdom 94: 1253-1265.
Miller PJO, Shapiro AD, Deecke VB (2010) The diving behaviour of mammal-eating killer whales (Orcinus orca): variations with ecological not physiological factors. Canadian Journal of Zoology 88: 1103-1112.

Palka DL (2006) Summer Abundance Estimates of Cetaceans in US North Atlantic Navy Operating Areas. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 06-03: 41 p.

Sivle LD, Kvadsheim PH, Fahlman A, Lam FPA, Tyack PL, Miller PJO (2012) Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales. Frontiers in Physiology 3.


[^0]:    *For questions, or to offer feedback about this model or report, please contact Jason Roberts (jason.roberts@duke.edu)

